1592
C. Johansson et al. / Tetrahedron: Asymmetry 21 (2010) 1585–1592
12. Vrieze, K. In Dynamic Nuclear Magnetic Resonance Spectroscopy; Jackman, L. M.,
Cotton, F. A., Eds.; Academic Press: New York, 1975.
employed, and the nucleophile was represented by dimethyl mal-
onate ion chelating a sodium atom, which was further solvated by
two dimethyl ether molecules as THF models.50 The energies in
solvent were compared directly, with the assumption that vibra-
tional contributions and systematic errors in the DFT functional
cancel for the very similar structures used in the comparison.22
13. Krämer, K.; Kazmaier, U. J. Org. Chem. 2006, 71, 8950–8953.
14. Faller, J. W.; Sarantopoulos, N. Organometallics 2004, 23, 2179–2185.
15. Granberg, K. L.; Bäckvall, J.-E. J. Am. Chem. Soc. 1992, 114, 6858–6863.
16. Martin, J. T.; Oslob, J. D.; Åkermark, B.; Norrby, P.-O. Acta Chem. Scand. 1995, 49,
888–893.
17. Strand, D.; Norrby, P.-O.; Rein, T. J. Org. Chem. 2006, 71, 1879–1891.
18. Pedersen, T. M.; Hansen, E. L.; Kane, J.; Rein, T.; Helquist, P.; Norrby, P.-O.;
Tanner, D. J. Am. Chem. Soc. 2001, 123, 9738–9743.
19. Gogoll, A.; Örnebro, J.; Grennberg, H.; Bäckvall, J.-E. J. Am. Chem. Soc. 1994, 116,
3631–3632.
20. Hansson, S.; Norrby, P.-O.; Sjögren, M.; Åkermark, B.; Cucciolito, M. E.;
Giordano, F.; Vitagliano, A. Organometallics 1993, 12, 4940–4948.
21. Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.; Miura, H.; Yanagi, K. J. Am.
Chem. Soc. 1989, 111, 6301–6311.
22. Butts, C. P.; Filali, E.; Lloyd-Jones, G. C.; Norrby, P.-O.; Sale, D. A.; Schramm, Y. J.
Am. Chem. Soc. 2009, 131, 9945–9957.
23. von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 566–569.
24. Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769–1773.
25. Allen, J. V.; Coote, S. J.; Dawson, G. J.; Frost, C. G.; Martin, C. J.; Williams, J. M. J. J.
Chem. Soc., Perkin Trans. 1 1994, 2065–2072.
26. Goldfuss, B.; Kazmeier, U. Tetrahedron 2000, 56, 6493–6496.
27. Svensen, N.; Fristrup, P.; Tanner, D.; Norrby, P.-O. Adv. Synth. Catal. 2007, 349,
2631–2640.
28. (a) Alcock, N. W.; Brown, J. M.; Hulmes, D. I. Tetrahedron: Asymmetry 1993, 4,
743–756; (b) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336–345.
29. Amatore, C.; Jutand, A. Coord. Chem. Rev. 1998, 178–180, 511–528.
30. Amatore, C.; Jutand, A.; Meyer, G.; Mottier, L. Chem. Eur. J. 1999, 5, 466–473.
31. Amatore, C.; Gamez, S.; Jutand, A.; Meyer, G.; Moreno-Mañas, M.; Morral, L.;
Pleixats, R. Chem. Eur. J. 2000, 6, 3372–3376.
Dynamic processes in (g
3-allyl)Pd complexes were studied
using a smaller model system, with H2P-CH2CH2-NH2 used as a
model for the real ligand. This approach will underestimate steric
repulsion in the system, but on the other hand, B3LYP is known
to overestimate non-bonded repulsive interactions due to the lack
of an appropriate treatment of dispersive interactions. The effect of
an added chloride was investigated. Chloride is present in small
amounts in many catalytic systems and is known to be a highly
efficient catalyst for dynamic processes in (g
3-allyl)Pd com-
plexes,20 but could also be considered a simplified model for other
anions like carboxylates that are used as leaving groups and there-
fore always present. For these complexes, stationary points were
determined in gas phase and validated by frequency calculation.
Energies in solvent were determined by single point continuum
calculations at the optimized geometries. Final free energies were
obtained by adding the vibrational contributions (including zero
point energies) to the calculated free energies in solvent. This ap-
proach is known to exaggerate the entropic contributions and thus
favors dissociated species, just like the dispersion error in DFT, but
this effect will to some extent be compensated by the choice of
small model system.
32. Moreno-Mañas, M.; Morral, L.; Pleixats, R. J. Org. Chem. 1998, 63, 6160–6166.
33. Overman, L. E.; Knoll, F. M. Tetrahedron Lett. 1979, 4, 321–324.
34. Weinhold, F.; Landis, C. Valency and Bonding: A Natural Bond Orbital Donor–
Acceptor Perspective; Cambridge University Press, 2005.
35. Evans, L. A.; Fey, N.; Harvey, J. N.; Hose, D.; Lloyd-Jones, G. C.; Murray, P.;
Orpen, A. G.; Osborne, R.; Owen-Smith, G. J. J.; Purdie, M. J. Am. Chem. Soc. 2008,
130, 14471–14473.
36. Cantat, T.; Gélin, E.; Giroud, C.; Meyer, G.; Jutand, A. J. Organomet. Chem. 2003,
687, 365–376.
37. Schuetz, R. D.; Millard, W. J. Org. Chem. 1959, 24, 297–300.
38. Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226–2227.
Acknowledgments
Support from the Swedish Research Council is gratefully
acknowledged. G.C.L.-J. thanks the Royal Society for a Wolfson Re-
search Merit Award.
´
39. Fairlamb, I. J. S.; Lloyd-Jones, G. C.; Vyskocil, S.; Kocovsky, P. Chem. Eur. J. 2002,
8, 4443–4453.
40. Habtemariam, A.; Watchman, B.; Potter, B. S.; Palmer, R.; Parsons, S.; Parkin, A.;
Sadler, P. J. J. Chem. Soc., Dalton Trans. 2001, 1306–1318.
41. Vitagliano, A.; Åkermark, B.; Hansson, S. Organometallics 1991, 10, 2592–2599.
42. Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
43. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
44. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994,
98, 11623–11627.
45. The LACVP basis set uses 6-31G for the lighter elements, and the Hay-Wadt
small-core ECP with accompanying basis set for Pd: Hay, P. J.; Wadt, W. R. J.
Chem. Phys. 1985, 82, 299–310.
46. Tannor, D. J.; Marten, B.; Murphy, R.; Friesner, R. A.; Sitkoff, D.; Nicholls, A.;
Ringnalda, M.; Goddard, W. A., III; Honig, B. J. Am. Chem. Soc. 1994, 116, 11875–
11882.
47. Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.;
Sitkoff, D.; Honig, B. J. Phys. Chem. 1996, 100, 11775–11788.
48. Hagelin, H.; Åkermark, B.; Norrby, P.-O. Chem. Eur. J. 1999, 5, 902–909.
49. Fristrup, P.; Ahlquist, M.; Tanner, D.; Norrby, P.-O. J. Phys. Chem. 2008, 112,
12862–12867.
References
1. Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis;
Wiley: Chichester, UK, 1997.
2. Åkermark, B.; Hansson, S.; Vitagliano, A. J. Am. Chem. Soc. 1990, 112, 4587–
4588.
3. Sjögren, M.; Hansson, S.; Norrby, P.-O.; Åkermark, B.; Cucciolito, M. E.;
Vitagliano, A. Organometallics 1992, 11, 3954–3964.
4. Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921–2943.
5. Pfaltz, A.; Lautens, M. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer: Heidelberg, 1999; pp 833–886.
6. Trost, B. M.; Lee, C. In Catalytic Asymmetric Synthesis; Ojima, I., Ed., 2nd ed.;
Wiley-VCH: New York, 2000; pp 593–649.
7. Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395–422.
8. Fiaud, J. C.; Malleron, J. L. Tetrahedron Lett. 1981, 22, 1399–1402.
9. Trost, B. M.; Bunt, R. C. J. Am. Chem. Soc. 1996, 118, 235–236.
10. Lloyd-Jones, G. C.; Stephen, S. C. Chem. Eur. J. 1998, 4, 2539–2549.
11. Fristrup, P.; Jensen, T.; Hoppe, J.; Norrby, P.-O. Chem. Eur. J. 2006, 12, 5352–
5360.
*
*
50. Kleimark, J.; Hedström, A.; Larsson, P.-F.; Johansson, C.; Norrby, P.-O.
ChemCatChem 2009, 1, 152–161.