P. Cotelle, H. Vezin / Tetrahedron Letters 42 (2001) 3303–3305
3305
ophilic reaction of nitrite on the caffeic ester o-quinone
does not occur. The unstable o-quinone may react
therefore with 2 to give 12. These results show that
nitrite under strong acidic conditions may promote the
oxidative dimerisation of caffeic acid ester leading to
neolignan compound. The oxidative dimerisation of
caffeic acid has also been demonstrated in the isolated
perfused rat liver18 but affords lignan derivatives.
7. Plu¨cken, U.; Winter, W.; Meier, H. Liebigs Ann. Chem.
1980, 1557–1572.
8. Rousseau, B.; Rosazza, J. P. N. J. Agric. Food Chem.
1998, 46, 3314–3317.
9. Grenier, J. L.; Cotelle, N.; Cotelle, P.; Catteau, J. P.
Bioorg. Med. Chem. Lett. 1996, 6, 431–434.
10. Grenier, J. L.; Cotelle, P.; Cotelle, N.; Catteau, J. P. J.
Chim. Phys. 1995, 92, 97–103.
11. Grenier, J. L.; Cotelle, N.; Catteau, J. P.; Cotelle, P. J.
Phys. Org. Chem. 2000, 13, 511–517.
3. Conclusion
12. Compounds 4, 6 and 8 have been separated by flash
chromatography. Compounds 4 and 6 have only been
characterised by their 1H NMR spectra because they
degraded within a few hours at room temperature.
3-(3,4-Dihydroxyphenyl)furazan-2-oxide 4: 1H NMR
The nitration of catechols with nitric oxide19,20 at phys-
iologic pH or nitrite under acidic conditions20 is well-
known and 6-nitrodopamine has been implicated in the
neuronal degeneration.21 On the other hand, it has been
reported that caffeic acid and related compounds are
potent scavengers of highly reactive nitrogen species
such as peroxynitrite22 or nitrogen dioxide radical.23
Chlorogenic acid and related compounds that are
widely present in various agricultural products in sub-
stantial quantities are important in human health and
may be useful as antioxidants and anticancer agents.
Therefore, it appears crucial to evaluate the toxicity of
nitrocaffeic acids and related compounds. In summary,
the present investigation has revealed that caffeates can
react with nitrite under physiologic acidic conditions to
differential extents depending on the function (ester or
acid) to give nitroderivatives, nitrogen heterocycles or
benzofuran dimers.
3
3
(methanol-d4): 6.99 (d, J=7.4 Hz, 1H), 7.43 (dd, J=7.4
Hz, 4J=2.0 Hz, 1H), 7.63 (d, 4J=2.0 Hz, 1H), 9.06 (s,
1H).
6,7-Dihydroxy-1,2-(4H)-benzoxazin-4-one 6: 1H NMR
(methanol-d4): 6.95 (s, 1H), 7.33 (s 1H), 8.13 (s, 1H).
13. Murphy, B. P. J. Org. Chem. 1985, 50, 5873–5875.
14. Methyl 2-nitrocaffeate 10 (89% yield): elemental analyses
for C10H9NO6; calcd C, 50.22; H, 3.79; N, 5.86; O, 40.13;
found C, 50.54; H, 3.53; N, 6.04; O, 40.51; mp 132–
133°C; 1H NMR (methanol-d4): 3.69 (s, 3H), 6.19 (d,
3J=15.9 Hz, 1H), 6.96 (s, 1H), 7.44 (s, 1H), 8.01 (d,
3J=15.9 Hz, 1H); IEMS (60 eV): 239 (19%), 225 (69%),
179 (56%), 51 (100%).
15. 2-Nitrochlorogenic acid 11 (11% yield): elemental analy-
ses for C16H17NO11; calcd C, 48.13; H, 4.29; N, 3.51; O,
44.07; found C, 48.14; H, 4.21; N, 3.34; O, 44.31; mp
1
2
240–245°C; H NMR (DMSO-d6): 1.79 (dd, J=13.0 Hz,
3J=7.2 Hz, 1H), 1.99 (m, 3H), 3.57 (dd, 3J=7.2 Hz,
4J=2.5 Hz, 1H), 3.93 (m, 1H), 5.10 (m, 1H), 6.21 (d,
3J=15.8 Hz, 1H), 7.11 (s, 1H), 7.54 (s, 1H), 7.96 (d,
3J=15.8 Hz, 1H); IEMS (60 eV): 339 (6%), 225 (45%),
179 (62%), 174 (38%), 51 (100%).
Acknowledgements
We acknowledge the Centre National de la Recherche
Scientifique (CNRS) for financial supports.
16. Hapiot, P.; Neudeck, A.; Pinson, J.; Fulcrand, H.; Neta,
P.; Rolando, C. J. Electroanal. Chem. 1996, 405, 169–176.
17. Pieters, L.; Van Dyck, S.; Gao, M.; Bai, R.; Hamel, E.;
Vlietinck, A.; Lemie`re, G. J. Med. Chem. 1999, 42,
5475–5481.
18. Gumbinger, H. G.; Vahlensieck, U.; Winterhoff, H.
Planta Med. 1993, 59, 491–493.
References
1. Kono, Y.; Shibata, H.; Kodama, Y.; Sawa, Y. Biochem.
J. 1995, 312, 947–953.
2. Kuenzig, W.; Chau, J.; Norkus, E.; Holowaschenko, H.;
Newmark, H.; Mergens, W.; Conney, A. H. Carcinogene-
sis 1984, 5, 309–313.
19. De La Brete`che, M. L.; Servy, C.; Lenfant, M.; Ducrocq,
C. Tetrahedron Lett. 1994, 35, 7231–7232.
3. Rao, G. S.; Osborn, J. C.; Adatia, M. R. J. Dent. Res.
20. D’Ischia, M.; Constantini, C. Bioorg. Med. Chem. 1995,
3, 923–927.
1982, 61, 768–771.
4. Mirvish, S. S. Toxicol. Appl. Pharmacol. 1975, 31, 325–
352.
21. Palumbo, A.; Napolitano, A.; Barone, P.; D’Ischia, M.
Chem. Res. Toxicol. 1999, 12, 1213–1222.
5. Choi, J. S.; Park, S. H.; Choi, J. H. Arch. Pharmacol.
Res. 1989, 12, 26–33.
6. Kukugawa, K.; Hakamada, T.; Hasunuma, M.; Kurechi,
22. Pannala, A.; Razaq, R.; Halliwell, B.; Singh, S.; Rice-
Evans, C. A. Free Radic. Biol. Med. 1998, 24, 594–606.
23. Zhouen, Z.; Side, Y.; Weizhen, L.; Wenfeng, W.; Yizun,
J.; Nianyun, L. Free Radic. Res. 1998, 29, 13–16.
T. J. Agric. Food Chem. 1983, 31, 780–785.
.
.