Organic Letters
Letter
(c) Michaelides, I. N.; Dixon, D. Angew. Chem., Int. Ed. 2013, 52, 806.
(d) Li, G.; Jin, R. J. Am. Chem. Soc. 2014, 136 (32), 11347. (e) Cao, H.;
Chen, T.; Zhou, Y.; Han, D.; Yin, S.-F.; Han, L.-B. Adv. Synth. Catal.
2014, 356, 765.
(7) (a) Shirakawa, E.; Otsuka, H.; Hayashi, T. Chem. Commun. 2005,
5885. (b) Yabe, Y.; Sawama, Y.; Monguchi, Y.; Sajiki, H. Chem. - Eur. J.
2013, 19, 484. (c) Li, S.-S.; Liu, X.; Liu, Y.-M.; He, H.-Y.; Fan, K.-N.;
Cao, Y. Chem. Commun. 2014, 50, 5626. (d) Neumann, K. T.; Klimczyk,
S.; Burhardt, M. N.; Bang-Andersen, B.; Skrydstrup, T.; Lindhardt, A. T.
ACS Catal. 2016, 6, 4710. (e) Tokmic, K.; Fout, A. R. J. Am. Chem. Soc.
dispersion as the electron donor and EtOD-d1 as the deuterium
donor. This method is operationally trivial and scalable and
represents the first reductive deuteration method that converts
unlabeled alkynes into [D3]-alkenes in a single step. This method
displays remarkable selectivity toward terminal alkyne groups in
that over-reduction of the alkyne and olefin isomerization are not
observed. The utility has been demonstrated in the synthesis of a
broad range of [D3]-alkenes with high deuterium incorporation
and in high yields. The labeled [D3]-alkenes have been
derivatized with full preservation of the deuterium content.
The successful synthesis of [D5]-pefurazoate demonstrates the
potential application of this method in the synthesis of new
deuterium-labeled bioactive compounds. Compared with the
current transition-metal-catalyzed reductive deuteration meth-
ods and H/D exchange reactions, this developed method is more
efficient and sustainable and operates with lower cost and higher
atom-economy.
̀
2016, 138, 13700. (f) Monfredini, A.; Santacroce, V.; Marchio, L.;
Maggi, R.; Bigi, F.; Maestri, G.; Malacria, M. ACS Sustainable Chem. Eng.
2017, 5, 8205.
(8) Numbers in brackets indicate percentage of exchanged protons at
that specified position determined by 1H NMR.
(9) (a) Han, M.; Ma, X.; Yao, S.; Ding, Y.; Yan, Z.; Adijiang, A.; Wu, Y.;
Li, H.; Zhang, Y.; Lei, P.; Ling, Y.; An, J. J. Org. Chem. 2017, 82, 1285.
(b) Li, H.; Zhang, B.; Dong, Y.; Liu, T.; Zhang, Y.; Nie, H.; Yang, R.; Ma,
X.; Ling, Y.; An, J. Tetrahedron Lett. 2017, 58, 2757 For one of the first
examples using SET reductive deuteration strategy, see:. (c) Szostak, M.;
Spain, M.; Procter, D. J. Org. Lett. 2014, 16, 5052.
ASSOCIATED CONTENT
* Supporting Information
■
(10) Pasto, D. J. Reductions of CC and C≡C by Noncatalytic
Chemical Methods. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Elsevier Science Ltd., 1991; Vol. 8, pp 471−488.
S
The Supporting Information is available free of charge on the
(11) Janjetovic, M.; Traff, A. M.; Ankner, T.; Wettergren, J.;
̈
Hilmersson, G. Chem. Commun. 2013, 49, 1826.
General experimental procedures, characterization of new
compounds, and 1H and 13C NMR spectra (PDF)
(12) (a) Shi, S.; Szostak, R.; Szostak, M. Org. Biomol. Chem. 2016, 14,
9151. (b) Shi, S.; Szostak, M. Org. Lett. 2015, 17, 5144. (c) Simmons, E.
M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 3066.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Key Research and Development Plan of
China (2017YFD0200504) and the National Natural Science
Foundation of China (No. 21602248, 21711530213) for
financial support.
REFERENCES
■
(1) (a) Katsnelson, A. Nat. Med. 2013, 19, 656. (b) Zhang, Y.;
Tortorella, M. D.; Wang, Y.; Liu, J.; Tu, Z.; Liu, X.; Bai, Y.; Wen, D.; Lu,
X.; Lu, Y.; Talley, J. ACS Med. Chem. Lett. 2014, 5, 1162. (c) Zhu, Y.;
Zhou, J.; Jiao, B. ACS Med. Chem. Lett. 2013, 4, 349. (d) Mullard, A. Nat.
Rev. Drug Discovery 2016, 15, 219. (e) Gant, T. G. J. Med. Chem. 2014,
57, 3595.
(2) (a) Mutlib, A. E. Chem. Res. Toxicol. 2008, 21, 1672. (b) Nag, S.;
Lehmann, L.; Kettschau, G.; Toth, M.; Heinrich, T.; Thiele, A.; Varrone,
A.; Halldin, C. Bioorg. Med. Chem. 2013, 21, 6634. (c) Wong, K. Y.; Xu,
Y.; Xu, L. Biochim. Biophys. Acta, Proteins Proteomics 2015, 1854, 1782.
(3) (a) Atzrodt, J.; Derdau, V. J. Labelled Compd. Radiopharm. 2010,
53, 674. (b) Nakanishi, A.; Fukushima, Y.; Miyazawa, N.; Yoshikawa, K.;
Maeda, T.; Kurobayashi, Y. J. Agric. Food Chem. 2017, 65, 5026.
(4) (a) Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51,
3066. (b) Giagou, T.; Meyer, M. P. Chem. - Eur. J. 2010, 16, 10616.
(5) (a) Zhou, J.; Hartwig, J. F. Angew. Chem., Int. Ed. 2008, 47, 5783.
(b) Rybtchinski, B.; Cohen, R.; Ben-David, Y.; Martin, J. M. L.; Milstein,
D. J. Am. Chem. Soc. 2003, 125, 11041. (c) Neubert, L.; Michalik, D.;
Bahn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.;
̈
Beller, M. J. Am. Chem. Soc. 2012, 134, 12239.
(6) (a) Oger, C.; Balas, L.; Durand, T.; Galano, J. Chem. Rev. 2013, 113,
1313. (b) Furstner, A.; Davies, P. W. Chem. Commun. 2005, 41, 2307.
̈
D
Org. Lett. XXXX, XXX, XXX−XXX