Dalton Transactions
Paper
MPMS-XL7 magnetometer which operates between 1.8 and
(b) O. R. Luca and R. H. Crabtree, Chem. Soc. Rev., 2013, 42,
1440–1459; (c) O. R. Luca, J. D. Blakemore, J. M. Praetorius,
T. J. Schmeier, G. B. Hunsinger, V. S. Batista,
G. W. Brudvig, N. Hazari and R. H. Crabtree, Inorg. Chem.,
2012, 51, 8704–8709.
3 (a) L. Sacconi, Pure Appl. Chem., 1968, 17, 95–127;
(b) I. Morassi, I. Bertini and L. Sacconi, Coord. Chem. Rev.,
1973, 11, 343–402; (c) L. Sacconi, G. P. Speroni and
R. Morassi, Inorg. Chem., 1968, 7, 1521–1525.
3
00 K for direct current (DC) applied fields up to 7 T.
Measurements were performed on a polycrystalline sample
of NiNNN (16.6 mg). The absence of ferromagnetic impurities
was confirmed by measuring the magnetization as a function
of field at 100 K. The magnetic data were corrected for the
sample holder and diamagnetic contributions from the
sample.
4
(a) T. O. Pennanen and J. Vaara, Phys. Rev. Lett., 2008, 100,
133002; (b) H. Liimatainen, T. O. Pennanen and J. Vaara,
Can. J. Chem., 2009, 87, 954; (c) J. Mao, Y. Zhang and
E. Oldfield, J. Am. Chem. Soc., 2002, 124, 13911;
Computational methods
Density functional theory calculations were performed using
2
5
Gaussian 09 and the B3LYP exchange–correlation functional
with unrestricted Kohn–Sham wave functions (UB3LYP). The
minimum energy structure of NiNNN (Fig. 1, right) was
obtained in the gas phase using a mixed basis with the
LANL2DZ basis set for Ni and the 6-311++G(d,p) basis set for
all other atoms. NMR shielding constants and Fermi-contact
terms were calculated using the gauge-independent atomic
orbital (GIAO) approach in conjunction with the polarizable
continuum model as implemented in Gaussian 09 with a
dielectric constant of ε = 8.93 (dichloromethane) for the conti-
(
d) R. Knorr, H. Hauer, A. Weiss, H. Polzer, F. Ruf, P. Löw,
P. Dvortsák and P. Böhrer, Inorg. Chem., 2007, 46, 8379;
e) P. Fernández, H. Pritzkow, J. Carbó, P. Hofmann and
(
M. Enders, Organometallics, 2007, 26, 4402; (f) M. Kruck,
D. C. Sauer, M. Enders, H. Wadepohl and L. H. Gade,
Dalton Trans., 2011, 40, 10406.
5
(a) L. Bertini and C. Luccinat, Coord. Chem. Rev., 1996, 150,
1
–296; (b) P. Roquette, A. Maronna, M. Reinmuth,
E. Kaifer, M. Enders and H.-J. Himmel, Inorg. Chem., 2011,
0, 1942–1955; (c) T. E. Manchonkin, M. W. Westler and
5
nuum solvating medium. Calculated values of δ
and
dia
J. L. Markley, Inorg. Chem., 2005, 44, 779–797.
I. Bertini, O. Turano and A. J. Vila, Chem. Rev., 1993, 93,
2
P. K. Bhattacharya, H. J. Lawson and J. K. Barton, Inorg.
Chem., 2003, 42, 8811–8817.
S. Ballayssac, I. Bertini, A. Bhaumik, M. Lelli and
C. Luchinat, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 17284–
−
3
1
0 T*δHF reported in Table 1 are an average of isochronous
6
7
8
protons, as defined in Fig. 1 (left). A reference chemical shift
of 31.77 ppm was used for the calculated values of δdia for
NiNNN (Table 1). This value was obtained by minimizing the
deviation from the values of δdia measured for the diamagnetic
reference (Table 1) and is in good agreement with a value of
833–2932.
3
1.97 ppm for tetramethylsilane calculated at the same level of
1
7289.
theory and solvent conditions.
9
E. W. Abel, R. J. Puddephatt, F. G. A. Stone and
G. Wilkinson, Comprehensive organometallic chemistry II:
a review of the literature, 1982–1994, Pergamon, 1995.
0 S. C. Davies, D. J. Evans, D. L. Hughes, S. Longhurst and
J. R. Sanders, Chem. Commun., 1999, 1935–1936.
1 C. A. Marganian, H. Vazir, N. Baidya, M. M. Olmstead and
P. K. Mascharak, J. Am. Chem. Soc., 1995, 117, 1584–1594.
2 S. A. Ross and C. J. Burrows, Inorg. Chem., 1998, 37, 5358–
Acknowledgements
1
1
1
1
1
1
The work was supported as part of the Center for Electrocataly-
sis, Transport Phenomena, and Materials (CETM) for Innova-
tive Energy Storage, an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences under Award Number
DE-SC00001055. [OL, RHC for NMR experiments and assign-
ment; KL synthesis of ZNNN; EP help with data collection and
analysis; SJK, VSB computation component of assignment; FH,
MM Magnetism measurements]. We thank Prof. Jack Faller
and Prof. Gary Brudvig for useful discussions. We thank the
University of Ottawa, CCRI, NSERC (Discovery and RTI grants);
ERA, Vision 2010, CFI, ORF, FFCR. We thank Dr Nathan Schley
and Dr Michael Takase for the crystal structure refinement.
5
363.
3 E. Kimura and R. Machida, J. Chem. Soc., Chem. Commun.,
984, 499–500.
1
4 A. J. Blake, R. O. Gould, M. A. Halcrow and M. Schröder,
J. Chem. Soc., Dalton Trans., 1993, 2909–2920.
5 (a) H. Pannemann, S. Wassmann, J. Wilken, H. Gröger,
S. Wallbaum, M. Kossenjans, D. Hasse, W. Saak, S. Pohl
and J. Martens, J. Chem. Soc., Dalton Trans., 2000, 2467–
2
470; (b) M. Bröring, S. Prikhodovski and C. D. Brandt,
J. Chem. Soc., Dalton Trans., 2002, 4213–4218.
1
6 E. W. Abel, R. J. Puddephatt, F. G. A. Stone and
G. Wilkinson, Comprehensive organometallic chemistry II:
a review of the literature 1982–1994, Pergamon, 1995.
References
1
2
R. H. Crabtree, Energy Environ. Sci., 2008, 1, 134.
(a) O. R. Luca, S. J. Konezny, J. D. Blakemore, S. Saha,
17 M.-H. Volbeda, C. Charon, E. C. Piras, M. Hatchikian,
M. Frey and J. C. Fontecilla-Camps, Nature, 1995, 373, 580.
D. M. Colosi, G. W. Brudvig, V. S. Batista and 18 (a) NMR of Paramagnetic Molecules, ed. G. N. La Mar,
R. H. Crabtree, New J. Chem., 2012, 36, 1149–1152;
W. DeW. Horrocks Jr. and R. H. Holm, Academic Press,
This journal is © The Royal Society of Chemistry 2013
Dalton Trans.