N. G. Rivera et al. / Tetrahedron Letters 48 (2007) 1201–1204
1203
cases where the substituent attached to the trichloro-
methyl group is a carbonyl moiety (entries a–d) or an
electron-withdrawing heterocyclic system (e.g., entries
e and f). However, with trichloroacetonitrile (entry g),
the reaction was very fast even at low temperatures
and difficulties were encountered to obtain the product
in a pure form. The reaction fails to occur with com-
pounds such as trichlorotoluene (entry h) and chloro-
form (entry i), where such activation is absent. Lastly,
this method may offer a strategically similar but tacti-
cally complementary alternative for the preparation of
Tetrahedron Lett. 1996, 37, 4621; (e) Yadav, J. S.; Reddy,
B. S.; Pandey, S. K. Synlett 2001, 238; (f) Yadav, J. S.;
Reddy, B. S.; Pandey, S. K. Synth. Commun. 2002, 32, 715;
(
g) Kamal, A.; Chouhan, G. Synlett 2002, 474; (h)
Firouzabadi, H.; Iranpoor, H.; Hazarkhani, H. J. Org.
Chem. 2001, 66, 7527; (i) Kanta, D. S. Tetrahedron Lett.
2
004, 45, 2339; (j) Tetrahedron Lett. 2004, 45, 7719.
6
. Capito, E.; Bernardi, L.; Comes-Franchini, M.; Fini, F.;
Fochi, M.; Polliano, S.; Ricci, A. Tetrahedron: Asymmetry
2005, 16, 3232.
7. (a) Seebach, D. Synthesis 1969, 1, 17; (b) Corey, E. J.;
Erickson, B. W. J. Org. Chem. 1971, 36, 3553; (c) Smith,
A. B.; Adams, C. M. Acc. Chem. Res. 2004, 37, 365; (d)
Hagooly, A.; Sasson, R.; Rozen, S. J. Org. Chem. 2003,
1
,3-dithianes bearing an electron-withdrawing group at
C-2 without the use of aldehydes.
6
8, 8287; (e) Takeda, T.; Kuroi, S.; Ozaki, M.; Tsubouchi,
A. Org. Lett. 2004, 6, 3207.
In summary, we have demonstrated that trichloromethyl
compounds, bearing a highly carbanion stabilizing sub-
stituent, are efficiently converted into the corresponding
8
. (a) Romero-Ortega, M.; Fuentes, A.; Gonz a´ lez, C.;
Morales, D.; Cruz, R. Synthesis 1999, 225; (b) Romero-
Ortega, M.; Reyes, H.; Covarrubias-Z u´ n˜ iga, A.; Cruz, R.;
Avila-Zarraga, J. G. Synthesis 2003, 2765; (c) Guzm a´ n,
A.; Romero, M.; Talam a´ s, F. X.; Villena, R.; Greenhouse,
R.; Muchowski, J. M. J. Org. Chem. 1996, 61, 2470.
1
,3-dithiane derivatives using a disodium 1,3-propanedi-
thiolate-1,3-propanedithiol mixture in DMF solution at
0
ꢀC. This process is expected to be particularly useful in
those instances where the heteroaryl or the a-carbonyl
aldehydes, the usual precursors of these 1,3-dithiane
derivatives, are not readily available.
9. 2-Trichloroacetylpyrole 1a, ethyl trichloroacetate 1c, tri-
chloroacetonitrile 1g, trichlorotoluene 1h, 1,3-propane-
dithiol and sodium hydride were purchased from Aldrich
and used as received. Compounds 1b, 1d–f were synthe-
8
sized by literature methods.
1
0. Typical procedure: To a stirred suspension of sodium
hydride (50% suspension in mineral oil) (384 mg, 8 mmol)
in anhydrous DMF (25 mL) under argon, was added 1,3-
propanedithiol (541 mg, 0.5 mL, 5 mmol) in DMF (5 mL)
at room temperature. After 10 min, the reaction mixture
was cooled to 0 ꢀC and 2-trichloroacetylpyrrole 1a
Acknowledgments
Financial support for this research from ‘Coordinaci o´ n
de Investigaci o´ n y Estudios Avanzados de la Universi-
dad Aut o´ noma del Estado de M e´ xico’ (Clave 1915/
004) is gratefully acknowledged. The authors wish to
thank Professor Joseph M. Muchowski from UNAM
for helpful discussions and his interest in our work.
(
212 mg, 1 mmol) in DMF (5 mL) was added dropwise.
2
The reaction was stirred under argon for 20 min at 0 ꢀC
and monitored by TLC (hexane:AcOEt, 80:20). The
reaction was quenched with satd aq ammonium chloride
solution, the product was extracted with AcOEt
(
2 4
3 · 50 mL), the organic layer was dried over Na SO .
Following solvent removal in vacuo, the product was
purified by silica gel column chromatography (hexane–
AcOEt, 85:15) to afford pure 2-(2 -pyrroloyl)-1,3-dithiane
References and notes
0
1
2
. (a) Seebach, D. Angew. Chem., Int. Ed. Engl. 1969, 8, 639;
b) Grobel, B. T.; Seebach, D. Synthesis 1977, 357; (c)
Bulman Page, O. C.; Van Niel, M. B.; Prodger, J. C.
Tetrahedron 1989, 45, 7643.
. (a) Greene, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis, 2nd ed.; Wiley: New York, 1991; pp
2
a 187 mg (88%) as a solid, mp 132–133 ꢀC (hexanes–
(
1
dichloromethane). H NMR (300 MHz, CDCl ) d: 2.05–
3
2
.19 (m, 2H), 2.71 (dt, 2H), 3.46 (dt, 2H), 4.86 (s, 1H), 6.30
13
(
m, 1H), 6.92 (m, 1H), 7.08 (m, 1H). C (75 MHz, CDCl
3
)
d: 184.11, 128.69, 125.91, 116.96, 111.10, 42.75, 29.70,
+
2
7.05, 25.25. EIMS m/z 213 (M , 45), 119 (100).
1
3
78–207; (b) Corey, E. J.; Seebach, D. J. Org. Chem. 1966,
1, 4097; (c) Eliel, E. L.; Morris-Natschke J. Am. Chem.
Compound 2b was purified by silica gel chromatography
using hexane–AcOEt 97:3, it was obtained as a solid, mp
Soc. 1984, 106, 2937.
1
8
7–88 ꢀC
(hexanes–dichloromethane).
H
NMR
3
. (a) Corey, E. J.; Seebach, D. J. Org. Chem. 1975, 40, 231;
(
300 MHz, CDCl
3
) d: 1.96–2.20 (m, 2H), 2.62–2.83 (m,
H), 3.37 (td, 2H), 5.16 (s, 1H), 7.42–7.61 (m, 3H), 7.92–
(
1
b) Corey, E. J.; Seebach, D. Angew. Chem., Int. Ed. Engl.
965, 4, 1075, 1077.
. (a) Garlaschelli, L.; Vidari, G. Tetrahedron Lett. 1990, 31,
815; (b) Hauptmann, H.; Campos, M. M. J. Am. Chem.
Soc. 1950, 72, 5815; (c) Seebach, D.; Kolb, M. Chem. Ind.
2
7
1
1
3
.97 (m, 2H). C (75 MHz, CDCl
28.6, 42.4, 26.3, 25.0. EIMS m/z 224 (M , 20), 119 (100).
3
) d: 192.6, 134.5, 133.3,
4
+
5
Compound 2c was purified by silica gel chromatography
using hexane–AcOEt 95:5, it was obtained as an oil, H
NMR (300 MHz, CDCl ) d: 1.32 (t, 3H), 1.96–2.20 (m,
1
(London) 1974, 687; (d) Ong, B. S. Tetrahedron Lett. 1980,
4225; (e) Kumar, V.; Dev, S. Tetrahedron Lett. 1983, 24,
1289; (f) Ku, B.; Oh, D. Y. Synth. Commun. 1989, 19, 433;
3
2
H), 2.60 (m, 2H), 3.41 (m, 2H), 4.17 (s, 1H), 4.24 (c, 2H).
1
3
C (75 MHz, CDCl
3
) d: 169.8 (C), 61.6, 40.0, 25.9, 25.0,
+
(
(
g) Ong, B. S.; Chan, T. H. Synth. Commun. 1977, 7, 283;
h) Corey, E. J.; Simoji, K. Tetrahedron Lett. 1983, 24,
1
4.0. EIMS m/z 192 (M , 65), 119 (100). Compound 2d
was purified by silica gel chromatography using hexane–
1
9
1
69; (i) Komatsu, N.; Uda, M.; Suzuki, H. Synlett 1995,
84; (j) Choudray, B. M.; Sudha, Y. Synth. Commun.
996, 2993.
AcOEt 70:30, it was obtained as a solid, mp 150–152 ꢀC.
1
3
H NMR (300 MHz, CDCl ) d: 2.11 (m, 2H), 2.73 (m,
2
7
1
1
H), 3.38 (m, 2H), 5.01 (s, 1H), 7.28–7.32 (m, 2H), 7.40–
.43 (m, 1H), 7.99 (d, 1H), 8.36–8.39 (m, 1H), 8.73 (br,
H). C (75 MHz, CDCl
23.9, 122.9, 122.5, 114.7, 111.4. 46.66, 29.39, 27.82, 25.48.
5
. (a) Djerassi, C.; Gorman, M. J. Am. Chem. Soc. 1953, 75,
704; (b) Wilson, G. E., Jr.; Huang, M. G.; Schloman, W.
3
1
3
3
) d: 191.2, 136.2, 131.7, 126.0,
W. J. Org. Chem. 1968, 33, 21343; (c) Evans, D. A.;
Truesdale, L. K.; Grimm, K. G.; Nesbit, S. L. J. Am.
Chem. Soc. 1977, 99, 5009; (d) Pantey, H. K.; Margan, S.
+
EIMS m/z 263 (M , 12), 144 (100). Compound 2e was