Chemistry - An Asian Journal
10.1002/asia.201500235
124.62, 125.06, 126.23, 126.55, 126.87, 127.60, 128.47, 129.70, 129.96, 130.27, 130.43,
131.55 ppm. MS m/z: 575.70. Anal. calcd for C43H29NO (%): C 89.71, H 5.08, N 2.43;
found: C 89.78, H 5.26, N 2.52.
25, 645-650. l) Y.-X. Zhang, L. Ding, X.-Y. Liu, Z.-Q. Jiang, H. Chen, S.-J. Ji,
L.-S. Liao, Org. Electron. 2015, 20, 112-118.
[3]
[4]
a) J.-K. Bin, N.-S. Cho, J.-I. Hong, Adv. Mater. 2012, 24, 2911–2915. b) C.-W.
Lee, J.-Y. Lee, Adv. Mater. 2013, 25, 5450–5454. c) M. Kim, J.-Y. Lee, Adv.
Funct. Mater. 2014, 24, 4164–4169. d) C.-W. Lee, J.-Y. Lee, Chem. Mater.
2014, 26, 1616–1621. e) H. Shin, S. Lee, K.-H. Kim, C.-K. Moon, S.-J. Yoo, J.-
H. Lee, J.-J. Kim, Adv. Mater. 2014, 26, 4730–4734. f) K. Udagawa, H. Sasabe,
C. Cai, J. Kido, Adv. Mater. 2014, 26, 5062–5066.
Preparation of 10-(3-(dibenzo[b,d]thiophen-4-yl)phenyl)-9,9-diphenyl-9,10-dihydro-
acridine
10-(3-(dibenzo[b,d]thiophen-4-yl)phenyl)-9,9-diphenyl-9,10-dihydroacridine (TPhAc)
was prepared in a similar manner with FPhAc. The result to afford a white power.
80% yield. 1H NMR (400 MHz, CDCl3): δ 6.59-6.61 (d, J = 8.0 Hz, 2H), 6.87-6.93 (m,
4H), 7.00-7.03 (m, 4H), 7.07-7.43 (m, 3H), 7.18-7.27 (m, 7H), 7.44-7.57 (m, 5H), 7.63-
7.67 (t, J = 8.0, 7.6 Hz, 1H), 7.81-7.85 (m, 2H), 8.13-8.18 (m, 2H) ppm. 13C NMR (100
MHz, CDCl3): δ 111.85, 114.28, 120.11, 120.18, 120.67, 122.84, 123.21, 124.00,
126.23, 127.60, 128.47, 129.70, 129.96, 130.27, 130.76, 131.55, 138.64, 141.08, 142.24,
146.46, 153.20, 156.06 ppm. MS m/z: 591.70. Anal. calcd for C43H29NS (%): C 87.27,
H 4.94, N 2.37; found: C 87.20, H 4.98, N 2.42.
a) S.-J. Su, H. Sasabe, T. Takeda, J. Kido, Chem. Mater. 2008, 20, 1691−1693.
b) S.-J. Su, C. Cai, J. Kido, Chem, Mater. 2011, 23, 274−284. c) S. Chaurasia,
W.-I. Hung, H.-H. Chou, J. T. Lin, Org. Lett. 2014, 16, 3052−3055. d) Y. Tan,
M. Liang, Z. Lu, Y. Zheng, X. Tong, Z. Sun, S. Xue, Org. Lett. 2014, 16,
3978−3981. e) L.-S. Cui, S.-C. Dong, Y. Liu, M.-F. Xu, Q. Li, Z.-Q. Jiang, L.-S.
Liao, Org. Electron. 2013, 14, 1924−1930. f) L.-S. Cui, S.-C. Dong, Y. Liu, Q.
Li, Z.-Q. Jiang, L.-S. Liao, J. Mater. Chem. C 2013, 1, 3967−3975. g) Y.-X.
Zhang, L. Zhang, L.-S. Cui, C.-H. Gao, H. Chen, Q. Li, Z.-Q. Jiang, L.-S. Liao,
Org. Lett. 2014, 16, 3748−3751. h) H. Chen, C.-H. Gao, Z.-Q. Jiang, L. Zhang,
L.-S. Cui, S.-J. Ji, L.-S. Liao, Dyes and Pigments. 2014, 107, 15−20. i) S.-C.
Dong, Y. Liu, Q. Li, L.-S. Cui, H. Chen, Z.-Q. Jiang, L.-S. Liao, J. Mater. Chem.
C 2013, 1, 6575−6584. j) N. Prachumrak, S. Pojanasopa, S. Namuangruk, T.
Kaewin, S. Jungsuttiwong, T. Sudyoadsuk, V. Promarak, ACS Appl. Mater.
Interfaces. 2013, 5, 8694−8703. k) M. J. Cho, S. J. Kim, S. H. Yoon, J. Shin, T.
R. Hong, H. J. Kim, Y. H. Son, J. S. Kang, H. A. Um, T. W. Lee, J.-K. Bin, B. S.
Lee, J. H. Yang, G. S. Chae, J. H. Kwon, D. H. Choi, ACS Appl. Mater.
Interfaces. 2014, 6, 19808−19815. l) M. Kim, J. Y. Lee, Org. Electron. 2013, 14,
67−73. m) S. Chen, B. Sun, W. Hong, Z. Yan, H. Aziz, Y. Meng, J. Hollinger, D.
S. Seferos, Y. Li, J. Mater. Chem. C 2014, 2, 1683−1690. n) A. Chaskar, H.-F.
Chen, K.-T. Wong, Adv. Mater. 2011, 23, 3876-3895. o) S. O. Jeon, J. Y. Lee, J.
Mater. Chem. 2012, 22, 4233–4243. p) M.-H. Tsai, Y.-H. Hong, C.-H. Chang,
H.-C. Su, C.-C. Wu, A. Matoliukstyte, J. Simokaitiene, S. Grigalevicius, J. V.
Grazulevicius, C.-P. Hsu, Adv. Mater. 2007, 19, 862−866. q) S.-J. Yeh, M.-F.
Wu, C.-T. Chen, Y.-H. Song, Y. Chi, M.-H. Ho, S.-F. Hsu, C. H. Chen, Adv.
Mate. 2005, 17, 285−289.
Device Fabrication and Testing
Bis(4,6-(difluorophenyl)pyrudinato-N,C')picolinateiridium(III) (FIrpic), 1,1-bis[4-
[N',N'-di(p-tolyl)amino]-phenyl]cyclohexane (TAPC), 1,3,5-tri[(3-pyridyl)phen-3-
yl]benzene (TmPyPB), dipyrazino[2,3-f:2',3'-h]-quinoxaline-2,3,6,7,10,11-hexacarbo-
nitrile (HAT-CN), 8-hydroxyquinolinolatolithium (Liq) and bis(4-phenylthieno[3,2-
c]pyridinato-N,C2')acetylacetonateiridium(III) (PO-01) were commercially available.
The OLEDs were fabricated on the indium-tin oxide (ITO) coated transparent glass
substrates, the ITO conductive layer having a thickness of ca. 100 nm and a sheet
resistance of ca. 30 Ω per square. The substrates was cleaned with ethanol, acetone and
deionized water, and then dried in an oven, finally exposed to UV ozone for 30 min. All
of the organic materials and metal layers under a vacuum of ca. 10-6 Torr. Four identical
OLED devices were formed on each of the substrates and the emission area of 0.09 cm2
for each unit. The EL performances of the blue and white devices were measured with a
PHOTO RESEARCH SpectraScan PR 655 PHOTOMETER and a KEITHLEY 2400
SourceMeter constant current source at room-temperature.
[5]
[6]
[7]
M. Kim. J.-Y. Lee, Org. Electron. 2012, 13, 1245−1249.
M.-S. Park, J.-Y. Lee, Chem. Mater. 2011, 23, 4338−4343.
Acknowledgements
We thank to the financial support from the Natural Science Foundation of China (Nos.
21202114 and 61177016). This project is also funded by Collaborative Innovation
Center (CIC) of Suzhou Nano Science and Technology, Soochow University, and by
the Priority Academic Program Development of the Jiangsu Higher Education
Institutions (PAPD).
a) C. Han, Z. Zhang, H. Xu, J. Li, Y. Zhao, P. Yan, S. Liu, Chem. Eur. J. 2013,
19, 1385–1396. b) C. Han, G. Xie, J. Li, Z. Zhang, H. Xu, Z. Deng, Y. Zhao, P.
Yan, S. Liu, Chem. Eur. J. 2011, 17, 8947–8956. c) L. Zhang, S. -C. Dong, C. -
H. Gao, X. -B. Shi, Z. -K. Wang, L. -S. Liao, Appl. Phys. A, 2015, 118, 381–387.
d) Y. Im, J. Y. Lee, Dyes and Pigments, 2015, 113, 743–747. e) K. -W. Lin, S.-J.
Zhen, S. -L. Ming, J. -K. Xu, B.-Y. Lu, New J. Chem. 2015, 39, 2096–2105. f) J.
-A. Seoa, M. S. Gonga, J. Y. Lee, Org. Electron, 2014, 15, 3773–3779. g) S. -C.
Dong, C. -H. Gao, Z. -H. Zhang, Z. -Q. Jiang, S. -T. Lee, L. -S. Liao, Phys.
Chem. Chem. Phys. 2012, 14, 14224–14228.
[1]
a) C. W. Tang, S. A. Van Slyke, Appl. Phys. Lett. 1987, 51, 913−915. b) J. Kido,
M. Kimura, Science 1995, 267, 1332−1334. c) M. A. Baldo, S. Lamansky, P. E.
Burrows, M. E. Thomposn, S. R. Forrest, Appl. Phys. Lett. 1999, 75, 4−6. d) C.
Adachi, M. A. Baldo, S. R. Forrest, M. E. Thomposn, Appl. Phys. Lett. 2000, 77,
904−906. e) Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, S. R.
Forrest, Nature 2006, 440, 908−912. f) Q. Wang, D. Ma, Chem. Soc. Rev., 2010,
39, 2387-2398. g) M. C. Gather, A. Köhnen, K. Meerholz, Adv. Mater. 2011, 23,
233−248. h) Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L.
Zhang, W. Huang, Adv. Mater. 2014, 26, 7931−7958. i) H. Wang, L. Xie, Q.
Peng, L. Meng, Y. Wang, Y. Yi, P. Wang, Adv. Mater. 2014, 26, 5198–5204.
[8]
a) X. Cai, A. B. Padmaperuma, L. S. Sapochak, P. A. Vecchi, P. E. Burrows,
Appl. Phys. Lett. 2008, 92, 083308-1-083308-3. b) M.-T. Chu, M.-T. Lee, C. H.
Chen, M.-R. Tseng, Org. Electron. 2009, 10, 1158–1162. c) S. H. Jeong, J. Y.
Lee, J. Mater. Chem. 2011, 21, 14604–14609. d) Z. Ren, R. Zhang, Y. Ma, F.
Wang, S. Yan, J. Mater. Chem. 2011, 21, 7777–7781. e) J.-K. Bin, J. H. Yang,
J.-I. Hong, J. Mater. Chem. 2012, 22, 21720–21726. f) S.-C. Dong, C.-H. Gao,
X.-D. Yuan, L.-S. Cui, Z.-Q. Jiang, S.-T. Lee, L.-S. Liao, Org. Electron. 2013,
14, 902–908. g) K. Togashi, T. Yasuda, C. Adachi, Chem. Lett. 2013, 42, 383–
385.
[2]
a) Y. Ma, H. Zhang, J. Shen, C. Che, Synth. Met. 1998, 94, 245−248. b) M. A.
Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R.
Forrest, Nature 1998, 395, 151−154. c) M. A. Baldo, D. F. O'Brien, M. E.
Thompson, S. R. Forrest, Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 60,
14422−14428. d) T. Tanaka, H. Sasabe, Y.-J. Li, S.-J. Su, T. Takeda,J. Kido, J.
Jpn. J. Appl. Phys. 2007, 46, L10. e) R. Meerheim, S. Scholz, S. Olthof, G.
Schwartz, S. Reineke, K. Walzer, K. Leo, Appl. Phys. Lett. 2008, 104, 014510.
f) L.-X. Xiao, Z.-J. Chen, B. Qu, J.-X. Luo, S. Kong, Q.-H. G ong, J. Kido, Adv.
Mater. 2011, 23, 926−952. g) Y.-T. Tao, C.-L. Yang, J.-G. Qin, Chem. Soc. Rev.
2011, 40, 2943−2970. h) K.-S. Yook, J.-Y. Lee, Adv. Mater. 2012, 24,
3169−3190. i) C.-H. Chang, Z.-J. Wu, C.-H. Chiu, Y.-H. Liang, Y.-S. Tsai, J.-L.
Liao, Y. Chi, H.-Y. Hsieh, T.-Y. Kuo, G.-H. Lee, H.-A. Pan, P.-T. Chou, J.-S.
Lin, M.-R. Tseng, ACS Appl. Mater. Interfaces. 2013, 5, 7341–7351. j) D. Liu,
H. Ren, L. Deng, T. Zhang, ACS Appl. Mater. Interfaces. 2013, 5, 4937–4944. k)
L. Ding, S.-C. Dong, Z.-Q. Jiang, H. Chen, L.-S. Liao, Adv. Funct. Mater. 2015,
[9]
C. Han, Z. Zhang, H. Xu, S. Yue, J. Li, P. Yan, Z. Deng, Y. Zhao, P. Yan, S. Liu,
J. Am. Chem. Soc. 2012, 134, 19179−19188.
[10] T. L. Andrew, T. M. Swager, J. Org. Chem. 2011, 76, 2976-2993.
Received: ((will be filled in by the editorial staff))
Revised: ((will be filled in by the editorial staff))
Published online:((will be filled in by the editorial staff))
7