Page 5 of 7
Green Chemistry
Please do not adjust margins
Journal Name
hydroxyl radical (OH•) and superoxide radical (O2−•).22a Further, present strategy represents
we recorded EPR spectra of reaction mixture in acetonitrile at development in synthetic chemistry.
160°C temperature and we observed singlet with g-factor
COMMUNICATION
a
DOI: 10.1039/C8GC03726D
2.0124 at 334 mT magnetic field (for EPR spectra see SI). This
may indicate the generation of superoxide radicals (O2−•) as
reported in the literature.22b,c The hydroxyl radical reacts with
benzylamine 1a and give a complex of ammonium cation
radical A through single electron transfer23 which undergo
deprotonation in presence of catalyst and generates benzylic
radical intermediate B. Intermediate B reacts with superoxide
radicals (O2−•) generates α-peroxo intermediate C,24 and its
subsequent oxidation yield the desired benzamide 2a (Scheme
5). The thioamide formation may proceed by two possible
pathways (Scheme 6). Initially, aerobic
Conflicts of interest
There are no conflicts to declare.
Acknowledgement
CSIR-CSMCRI Communication No. 193/2018. We are thankful
to “Analytical Discipline and Centralized Instrumental
Facilities” for instrumentation facilities. A.J., R.K. and R.S. are
thankful to CSIR, UGC, DST (Inspire) for their fellowships. We
thank DST, New Delhi (EMR/2016/000010) for the research
grants and CSIR-CSMCRI (OLP-0088 and MLP-0027) for the
partial financial support.
NH
Bu
Bu
Bu
S
7
N
OH
IL
Bu
3a
S
1a
NH2
O2
path-a
A
1a
NH3
H2O
path-b
Notes and references
NH3
Bu
Bu
Bu
Bu
Bu
Bu
Bu
N
N
1. E. Valeur and M. Bradley, Chem. Soc. Rev. 2009, 38, 606–631.
2. (a) Wieland, T.; Bodanszky, M. The World of Peptides: A Brief
History of Peptide Chemistry; (b) Springer, 1991.C. E.
Mabermann in Encyclopedia of Chemical Technology, Vol. 1
(Ed.: J. I. Kroschwitz), Wiley, New York, 1991, 251 –266; (c) D.
Lipp in Encyclopedia of Chemical Technology, Vol. 1 (Ed.: J. I.
Kroschwitz), Wiley, New York, 1991, 266 – 287; (d) R. Opsahl in
Encyclopedia of Chemical Technology, Vol. 2 (Ed.: J. I.
Kroschwitz), Wiley, New York, 1991, 346 – 356; (e) R. C. Larock,
Comprehensive Organic Transformations, 2nd ed., Wiley-VCH,
New York, 1999.
N
S
OH
Bu
6
H
S
NH2
NH
Ph
S
HN
Ph
1a
B
NH2
S
N
C
H
3a
Scheme 6. Plausible reaction mechanism for 3a
oxidation of 1a generates imine intermediate A in the
presence of Bu4NOH.25 Reaction of this intermediate A with 3. (a) X. Liu, C. Chi Hsiao, L. Guo and M. Rueping, Org. Lett.,
2018, 20, 2976−2979; (b) D. Yu Wang, M. Kawahata, Ze-Kun
Yang, K. Miyamoto, S. Komagawa, K. Yamaguchi, C. Wang and
M. Uchiyama, Nature Chemistry, 2016, 8 75-79; (c) G. Meng
and M. Szostak, Org. Lett., 2018, 20, 6789–6793.
4. (a) C. L. Allen, R. A. Chhatwal and J. M. J. Williams, Chem.
Commun. 2012, 48, 666-668; (b) K. Ishihara and T. Yano, Org.
Lett. 2004, 6, 1983-1986; (c) S. C. Ghosh, J. S. Y. Ngiam, A. M.
Seayad, D. H. Tuan, C. L. L. Chai and A. Chen, J. Org. Chem.
2012, 77, 8007-8015; (d) H. Morimoto, R. Fujiwara, Y. Shimizu,
K. Morisaki and T. Ohshima, Org. Lett. 2014, 16, 2018-2021; (e)
S. Shi, S. P. Nolan and M. Szostak, Acc. Chem. Res., 2018, 51,
2589–2599.
elemental sulfur under aerobic conditions generate the stable
benzothioamide 7 (path-a). The reaction of 7 with Bu4NOH
generates the adduct B.12,26 The nucleophilic attack of 1a on
the electrophilic carbon centre of the adduct B, generates
another intermediate C. With subsequent elimination of
ammonia through transthioamidation provide the desired
product 3a. On the other hand (path-b) the reaction of
intermediate A with another molecule of 1a and elemental
sulfur yield the desired product 3a via imine intermediate 6.
5. (a) K. Yamaguchi, M. Matsushita and N. Mizuno, Angew.
Chem., Int. Ed. 2004, 43, 1576-1580; (b) A. Goto, K. Endo and S.
Saito, Angew. Chem., Int. Ed. 2008, 47, 3607-3609; (c) R. S.
Ramon, N. Marion and S. P. Nolan, Chem. - Eur. J. 2009, 15,
8695-8697; (d) T. Mitsu-dome, Y. Mikami, H. Mori, S. Arita, T.
Mizugaki, K. Jitsukawa and K. Kaneda, Chem. Commun. 2009,
0, 3258-3260.
6. (a) X.-F. Wu, C. B. Bheeter, H. Neumann, P. H. Dixneuf and M.
Beller, Chem. Commun. 2012, 48, 12237–12239; (b) C. J.
Legacy, A. Wang, B. J. O’Day and M. H. Emmert, Angew. Chem.
Int. Ed. 2015, 54, 14907–14910; Angew. Chem. 2015, 127,
15120–15123; (c) W. Xu, Y. Jiang and H. Fu, Synlett 2012, 23,
801–804; (d) Y. Wang, H. Kobayashi, K. Yamaguchi and N.
Mizuno, Chem. Commun. 2012, 48, 2642 – 2644; (e) S. Murata,
M. Miura and M. Nomura, J. Org. Chem. 1989, 54, 4700–4702;
(f) G. Li and M. Szostak, Nat. Commun., 2018, 9, 1–8.
Conclusions
In conclusion, we have developed a novel ionic liquid catalysed
aerobic oxidation of benzyl amines to benzamides under
metal-free conditions. It is noteworthy to mention that, the
present method is not only base-free and solvent-free
conditions, but utilised atmospheric oxygen as a sole oxidant.
Under the same conditions with elemental sulfur,
corresponding benzylbenzothioamides were obtained from
benzyl
amines.
Under
the
optimised
conditions
benzophenone, phenyl(pyridin-2-yl)methanone, benzyl, 9H-
fluoren-9-one and 1H-inden-1-one were obtained. The mild
reaction conditions, metal-free, base-free and solvent-free
conditions good functional-group tolerance, broad range of
products (amides, thioamides, and benzylic) and applicability
at gram scale for practical synthesis of desired amides, the
7. (a) J. W. Kim, K. Yamaguchi and N. Mizuno, Angew. Chem., Int.
Ed. 2008, 47, 9249-9251; (b) A. Ilangovan and G. Satish, Org.
Lett. 2013, 15, 5726-5729; (c) A. Poeschl and D. M. Mountford,
Org. Biomol. Chem. 2014, 12, 7150-7158.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins