In summary, we described a fluorescence turn-on chemodosi-
meter for Cu2+ based on the ion promoted oxidation of ben-
zothiazoline to benzothiazole. Chemodosimeter L could detect
Cu2+ with high selectivity and sensitivity in aqueous solution.
Meanwhile, other common metal ions had little interference on
the detection of Cu2+. This method opens up a new way for the
detection of metal ions. Further efforts in our laboratory will
focus on the detection of other possible substances with this
easy oxidation process from benzothiazoline to benzothiazole.
Acknowledgements
Fig. 3 Fluorescence enhancement factors (FEF) of L (1 μM) in
HEPES (10 mM, pH = 7.4) buffer containing 50% (v/v) water–CH3CN.
Blue bars represent addition of different metal ions (10 equiv.) to the sol-
ution. Red bars represent addition of Cu2+ (10 equiv.) and different
metal ions (10 equiv.) to the solution. Excitation and emission were at
457 nm and 509 nm, respectively.
This work was supported by National Science Foundation of
China (No. 20901063), Wuhan Chenguang Scheme (Grant
201050231049) established under Wuhan Science and Technol-
ogy Bureau, the Open Research Fund of Key Laboratory for
Green Chemical Process of Ministry of Education, Wuhan Insti-
tute of Technology under grant (No. GCP201003).
Notes and references
1 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C.
P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97, 1515–
1566.
2 S. W. Thomas III, G. D. Joly and T. M. Swager, Chem. Rev., 2007, 107,
1339–1386.
3 W. S. Han, H. Y. Lee, S. H. Jung, S. J. Lee and J. H. Jung, Chem. Soc.
Rev., 2009, 38, 1904–1915.
4 M. J. Yuan, Y. L. Li, J. B. Li, C. H. Li, X. F. Liu, J. Lv, J. L. Xu, H.
B. Liu, S. Wang and D. B. Zhu, Org. Lett., 2007, 9, 2313–2316.
5 S. Mizukami, T. Nagano, Y. Urano, A. Odani and K. Kikuchi, J. Am.
Chem. Soc., 2002, 124, 3920–3925.
6 M. Zhu, M. J. Yuan, X. F. Liu, J. L. Xu, J. Lv, C. S. Huang, H. B. Liu, Y.
L. Li, S. Wang and D. B. Zhu, Org. Lett., 2008, 10, 1481–1484.
7 F. B. Yu, W. S. Zhang, P. Li, Y. L. Xing, L. L. Tong, J. P. Ma and
B. Tang, Analyst, 2009, 134, 1826–1833.
Fig. 4 Plot of fluorescence intensity versus the concentration of Cu2+
.
8 L. Huang, F. J. Chen, P. X. Xi, G. Q. Xie, Z. P. Li, Y. J. Shi, M. Xu, H.
Y. Liu, Z. R. Ma, D. C. Bai and Z. Z. Zeng, Dyes Pigm., 2011, 90, 265–
268.
9 H. H. Wang, L. Xue, Z. J. Fang, G. P. Li and H. Jiang, New J. Chem.,
2010, 34, 1239–1242.
the effective PET process from the N atom to coumarin. Upon
addition of Cu2+ (10 equiv.), the maximum emission peak at
509 nm was enhanced by nearly 22-fold. While other metal ions
showed no fluorescence enhancement except Fe3+ showed a 2-
fold enhancement. Therefore, compound L could detect Cu2+
with high selectivity. Meanwhile, titration of L with Cu2+ was
also performed in HEPES (10 mM, pH = 7.4) buffer containing
50% (v/v) water–CH3CN. With increasing Cu2+ concentration,
the emission of L was drastically increased with a fluorescence
enhancement factor (FEF) up to 22-fold (Fig. 3). The interfer-
ence of other metal ions to the detection of Cu2+ was also inves-
tigated. Cu2+ (10 equiv.) were added into the solution of L in the
presence of other metal ions (10 equiv.). As shown in Fig. 3,
apparently, Ag+, Co2+ and Ni2+ show little interference with rela-
tive errors of 5.7%, 4.3% and 6.7%, respectively. Other metal
ions had no interference on the detection of Cu2+ with relative
errors of no more than 3.0%. The results showed that common
metal ions had no interference on the detection of Cu2+, which
made it feasible for practical application. Meanwhile, the fluor-
escence intensity was linear with Cu2+ concentration in the range
of 5 × 10−7–4 × 10−6 M. The linear regression equation was
determined to be F = 613.50 × 106 × [Cu2+] + 41.69 (n = 13, R
= 0.99958) (Fig. 4). The detection limit was calculated to be 58
nM with the equation: detection limit = 3Sd/ρ, where Sd is the
standard deviation of blank measurement; ρ is the slope between
the fluorescence intensity versus Cu2+ concentration.29
10 A. Torrado, G. K. Walkup and B. Imperiali, J. Am. Chem. Soc., 1998,
120, 609–1977.
11 Y. Zheng, X. Cao, J. Orbulescu, V. Konka, F. M. Andreopoulos, S.
M. Pham and R. M. Leblanc, Chem. Commun., 2002, 2350–2351.
12 Y. Li and C. M. Yang, Chem. Commun., 2003, 2884–2885.
13 Y. Xiang, A. J. Tong, P. Y. Jin and Y. Ju, Org. Lett., 2006, 8, 2863–2866.
14 F. B. Yu, W. S. Zhang, P. Li, Y. L. Xing, L. L. Tong, J. P. Ma and
B. Tang, Analyst, 2009, 134, 1826–1833.
15 K. C. Ko, J. S. Wu, H. J. Kim, P. S. Kwon, J. W. Kim, R. A. Bartsch, J.
Y. Lee and J. S. Kim, Chem. Commun., 2011, 47, 3165–3167.
16 S. P. Wu, T. H. Wang and S. R. Liu, Tetrahedron, 2010, 66, 9655–9658.
17 G. K. Li, Z. X. Xu, C. F. Chen and Z. T. Huang, Chem. Commun., 2008,
1774–1776.
18 X. H. Wang, J. Cao and C. F. Chen, Chin. J. Chem., 2010, 28, 1777–
1779.
19 V. Dujols, F. Ford and A. W. Czarnik, J. Am. Chem. Soc., 1997, 119,
7386–7387.
20 M. Kumar, N. Kumar, V. Bhalla, P. R. Sharma and T. Kaur, Org. Lett.,
2012, 14, 406–409.
21 Q. P. Shen, S. Y. Tang, W. H. Li, Z. Nie, Z. L. Liu, Y. Huang and S.
Z. Yao, Chem. Commun., 2012, 48, 281–283.
22 Z. P. Li and C. J. Li, J. Am. Chem. Soc., 2005, 127, 3672–3673.
23 F. Yang, J. Li, J. Xie and Z. Z. Huang, Org. Lett., 2010, 12, 5214–5217.
24 E. Boess, D. Sureshkumar, A. Sud, C. Wirtz, C. Farès and
M. Klussmann, J. Am. Chem. Soc., 2011, 133, 8106–8109.
25 H. P. Lankelma and P. X. Sharnoff, J. Am. Chem. Soc., 1931, 53, 2654–
2657.
26 R. G. Charles and H. Freiser, J. Org. Chem., 1953, 18, 422–425.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 3623–3626 | 3625