Organic Letters
Letter
D. Bioorg. Med. Chem. Lett. 2011, 21, 484−487. (d) Kerns, J. K.; Busch-
Petersen, J.; Fu, W.; Boehm, J. C.; Nie, H.; Muratore, M.; Bullion, A.;
Lin, G.; Li, H.; Davis, R.; Lin, X.; Lakdawala, A. S.; Cousins, R.; Field,
R.; Payne, J.; Miller, D. D.; Bamborough, P.; Christopher, J. A.;
Baldwin, I.; Osborn, R. R.; Yonchuk, J.; Webb, E.; Rumsey, W. L. ACS
Med. Chem. Lett. 2018, 9, 1164−1169.
(7) For selected examples, see: (a) Somei, M.; Kawasaki, T.; Ohta, T.
Heterocycles 1988, 27, 2363−2365. (b) Ganton, M. D.; Kerr, M. A. Org.
Lett. 2005, 7, 4777−4779. (c) Tsukano, C.; Okuno, M.; Takemoto, Y.
Angew. Chem., Int. Ed. 2012, 51, 2763−2766. (d) Dawande, S. G.;
Kanchupalli, V.; Kalepu, J.; Chennamsetti, H.; Lad, B. S.; Katukojvala,
S. Angew. Chem., Int. Ed. 2014, 53, 4076−4080. (e) Yu, W.-Y.; Sit, W.
N.; Lai, K.-M.; Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc. 2008, 130,
3304−3306. (f) Kim, M.; Kumar Mishra, N.; Park, J.; Han, S.; Shin, Y.;
Sharma, S.; Lee, Y.; Lee, E.-K.; Kwak, J. H.; Kim, I. S. Chem. Commun.
2014, 50, 14249−14252. (g) Shin, Y.; Sharma, S.; Mishra, N. K.; Han,
S.; Park, J.; Oh, H.; Ha, J.; Yoo, H.; Jung, Y. H.; Kim, I. S. Adv. Synth.
Catal. 2015, 357, 594−600. (h) Sharma, S.; Kumar Mishra, N.; Shin, Y.;
Su Kim, I. Curr. Org. Chem. 2015, 20, 471−511. (i) Jo, H.; Park, J.;
Mishra, N. K.; Jeon, M.; Sharma, S.; Oh, H.; Lee, S.-Y.; Jung, Y. H.; Kim,
I. S. Tetrahedron 2017, 73, 1725−1732.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the National Natural Science
Foundation of China (Grant Nos. 21372231, 21173241, and
21673260), Youth Innovation Promotion Association CAS
(No. 2013270), and Hangzhou Normal University for financial
support. We thank Mr. Zhiqiang Shen for assistance with NMR
experiments, Ms. Xiaoxue Hu for HRMS analyses, and Ms. Peiju
Yang for X-ray diffraction analyses. We also thank Prof. Wei Sun
and Dr. Qiangsheng Sun for their help with HPLC separation.
REFERENCES
■
(1) For selected reviews, see: (a) Liu, Q.; Zhang, H.; Lei, A. Angew.
Chem., Int. Ed. 2011, 50, 10788−10799. (b) Engle, K. M.; Mei, T.-S.;
Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788−802. (c) Wu, X.-F.;
Neumann, H.; Beller, M. ChemSusChem 2013, 6, 229−241. (d) Wu, L.;
Fang, X.; Liu, Q.; Jackstell, R.; Beller, M.; Wu, X.-F. ACS Catal. 2014, 4,
2977−2989. (e) Lang, R.; Xia, C.; Li, F. New J. Chem. 2014, 38, 2732−
2738. (f) Gadge, S. T.; Gautam, P.; Bhanage, B. M. Chem. Rec. 2016, 16,
835−856. (g) Rajesh, N.; Barsu, N.; Sundararaju, B. Tetrahedron Lett.
2018, 59, 862−868. (h) He, C.; Whitehurst, W. G.; Gaunt, M. J. Chem.
2019, 5, 1031−1038.
(8) (a) Chatani, N.; Yorimitsu, S.; Asaumi, T.; Kakiuchi, F.; Murai, S.
J. Org. Chem. 2002, 67, 7557−7560. (b) Wang, P.-L.; Li, Y.; Ma, L.; Luo,
C.-G.; Wang, Z.-Y.; Lan, Q.; Wang, X.-S. Adv. Synth. Catal. 2016, 358,
1048−1053.
(9) (a) Jiao, L.-Y.; Oestreich, M. C−H Bond Functionalization at the
Benzene Core of Indoles and Indolines (Excluding C-2 and C-3). In
Strategies for Palladium-Catalyzed Non-Directed and Directed C−H Bond
Functionalization; Kapdi, A. R., Maiti, D., Eds.; Elsevier Inc., 2017; pp
205−232. For selected reports on C7-selective C−H activation of
indoles, see: (b) Robbins, D. W.; Boebel, T. A.; Hartwig, J. F. J. Am.
Chem. Soc. 2010, 132, 4068−4069. (c) Xu, L.; Zhang, C.; He, Y.; Tan,
L.; Ma, D. Angew. Chem., Int. Ed. 2016, 55, 321−325. (d) Yang, Y.; Qiu,
X.; Zhao, Y.; Mu, Y.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 495−498.
(e) Borah, A. J.; Shi, Z. J. Am. Chem. Soc. 2018, 140, 6062−6066.
(f) Qiu, X.; Deng, H.; Zhao, Y.; Shi, Z. Sci. Adv. 2018, 4, No. eaau6468.
(g) Qiu, X.; Wang, P.; Wang, D.; Wang, M.; Yuan, Y.; Shi, Z. Angew.
Chem., Int. Ed. 2019, 58, 1504−1508.
(2) (a) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651−
̈
3678. (b) Kuhl, N.; Schroder, N.; Glorius, F. Adv. Synth. Catal. 2014,
356, 1443−1460. (c) Hummel, J. R.; Boerth, J. A.; Ellman, J. A. Chem.
Rev. 2017, 117, 9163−9227. (d) Park, Y.; Kim, Y.; Chang, S. Chem. Rev.
2017, 117, 9247−9301. (e) Piou, T.; Rovis, T. Acc. Chem. Res. 2018, 51,
170−180. (f) Rej, S.; Chatani, N. Angew. Chem., Int. Ed. 2019, 58,
8304−8329.
(3) (a) Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.;
Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000, 122, 12882−12883.
(b) Guan, Z.-H.; Ren, Z.-H.; Spinella, S. M.; Yu, S.; Liang, Y.-M.;
Zhang, X. J. Am. Chem. Soc. 2009, 131, 729−733. (c) Du, Y.; Hyster, T.
K.; Rovis, T. Chem. Commun. 2011, 47, 12074−12076. (d) Lang, R.;
Wu, J.; Shi, L.; Xia, C.; Li, F. Chem. Commun. 2011, 47, 12553−12555.
(e) Iturmendi, A.; Sanz Miguel, P. J.; Popoola, S. A.; Al-Saadi, A. A.;
Iglesias, M.; Oro, L. A. Dalton Trans. 2016, 45, 16955−16965.
(4) For selected examples of RhCl3·3H2O-catalyzed C−H activation,
see: (a) Witulski, B.; Schweikert, T. Synthesis 2005, 2005, 1959−1966.
(b) Wang, P.; Rao, H.; Hua, R.; Li, C.-J. Org. Lett. 2012, 14, 902−905.
(c) Ran, Y.; Yang, Y.; You, H.; You, J. ACS Catal. 2018, 8, 1796−1801.
(d) Shi, Y.; Zhang, L.; Lan, J.; Zhang, M.; Zhou, F.; Wei, W.; You, J.
Angew. Chem., Int. Ed. 2018, 57, 9108−9012. (e) She, Z.; Wang, Y.;
Wang, D.; Zhao, Y.; Wang, T.; Zheng, X.; Yu, Z.-X.; Gao, G.; You, J. T. J.
Am. Chem. Soc. 2018, 140, 12566−12573.
(10) (a) Yang, L.; Zhang, G.; Huang, H. Adv. Synth. Catal. 2014, 356,
1509−1515. (b) Zhao, K.; Du, R.; Wang, B.; Liu, J.; Xia, C.; Yang, L.
ACS Catal. 2019, 9, 5545−5551.
(12) No racemization was observed during the C−H alkoxycarbony-
(13) A cascade C−H alkoxycarbonylation and DDQ oxidation
process was also conducted. However, only moderate yield of 7 could
(14) Liu, B.; Hu, F.; Shi, B.-F. ACS Catal. 2015, 5, 1863−1881.
(15) The possible participation of species II in the catalytic cycle was
also verified by ESI-MS studies of the crude reaction of A with CO. For
(5) For selected examples, see: (a) Owa, T.; Yokoi, A.; Yamazaki, K.;
Yoshimatsu, K.; Yamori, T.; Nagasu, T. J. Med. Chem. 2002, 45, 4913−
4922. (b) Nicolaou, K. C.; Chen, D. Y.-K.; Huang, X.; Ling, T.; Bella,
M.; Snyder, S. A. J. Am. Chem. Soc. 2004, 126, 12888−12896.
(c) Chang, J.-Y.; Hsieh, H.-P.; Chang, C.-Y.; Hsu, K.-S.; Chiang, Y.-F.;
Chen, C.-M.; Kuo, C.-C.; Liou, J.-P. J. Med. Chem. 2006, 49, 6656−
6659. (d) Ozawa, Y.; Kusano, K.; Owa, T.; Yokoi, A.; Asada, M.;
Yoshimatsu, K. Cancer Chemother. Pharmacol. 2012, 69, 1353−1362.
(e) Tomakinian, T.; Guillot, R.; Kouklovsky, C.; Vincent, G. Angew.
Chem., Int. Ed. 2014, 53, 11881−11885.
(6) (a) Barf, T.; Lehmann, F.; Hammer, K.; Haile, S.; Axen, E.;
̈
Medina, C.; Uppenberg, J.; Svensson, S.; Rondahl, L.; Lundback, T.
Bioorg. Med. Chem. Lett. 2009, 19, 1745−1748. (b) Colucci, J.; Boyd,
M.; Berthelette, C.; Chiasson, J.-F.; Wang, Z.; Ducharme, Y.; Friesen,
R.; Wrona, M.; Levesque, J.-F.; Denis, D.; Mathieu, M.-C.; Stocco, R.;
Therien, A. G.; Clarke, P.; Rowland, S.; Xu, D.; Han, Y. Bioorg. Med.
Chem. Lett. 2010, 20, 3760−3763. (c) Boyd, M. J.; Berthelette, C.;
́
Chiasson, J.-F.; Clark, P.; Colucci, J.; Denis, D.; Han, Y.; Levesque, J.-F.;
Mathieu, M.-C.; Stocco, R.; Therien, A.; Rowland, S.; Wrona, M.; Xu,
E
Org. Lett. XXXX, XXX, XXX−XXX