Regioselective Qu in a zolin on e-Dir ected
Or th o Lith ia tion of
Qu in a zolin oylqu in olin e: P r a ctica l
Syn th esis of Na tu r a lly Occu r r in g Hu m a n
DNA Top oisom er a se I P oison Lu oton in A
a n d Lu oton in s B a n d E†
Santosh B. Mhaske and Narshinha P. Argade*
Combi Chem-Bio Resource Center, Division of Organic
Chemistry (Synthesis), National Chemical Laboratory,
Pune 411 008, India
F IGURE 1. Lithiations on substituted quinazolinones.
argade@dalton.ncl.res.in
Received March 16, 2004
Abstr a ct: A regioselective quinazolinone-directed ortho
lithiation on an adjacent quinoline moiety has been used as
a key step for a short, efficient, and practical synthesis of
the human DNA topoisomerase I poison luotonin A and
luotonins B and E. The quinazolinoylquinoline 5 on treat-
ment with in situ-generated nonnucleophilic mesityllithium
furnished the desired dilithiated intermediate 6, which on
treatment with formaldehyde followed by Mitsunobu ring
closure reaction gave luotonin A (1a ) in very good yield. The
reaction of dilithiated intermediate 6 with DMF directly
furnished luotonin B (1b) in 81% yield. Luotonin B (1b) on
methylation with p-TSA/methanol gave luotonin E (1c) in
82% yield.
F IGURE 2. Naturally occurring luotonin alkaloids.
the 2-methyl-/alkyl-substituted quinazolinones are known
to undergo lithiation at the 2-alkyl position.6 However,
to the best of our knowledge, ortho lithiation of aryl and
heteroaryl substituents on quinazolinones have not been
reported in the literature and will be highly useful for
the introduction of ortho substituents for the facile
synthesis of several complex bioactive natural and un-
natural quinazolinones and related compounds (Figures
2 and 3).
Recently, Nomura and co-workers7 isolated six new
alkaloids, luotonins A-F, from aerial parts of the Chinese
medicinal plant Peganum nigellastrum (Figure 2). Luo-
tonin A is cytotoxic toward the murine leukemia P-388
cell line (IC50 1.8 µg/mL).7 Very recently, Hecht et al.8a
have demonstrated that despite the lack of lactone ring
functionality, luotonin A stabilizes the human DNA
topoisomerase I-DNA covalent binary complex and
mediates topoisomerase I-dependent cytotoxicity in intact
cells (IC50 5.7-12.6 µm/mL), like camptothecin and its
analogues8,9 (Figure 3). In a very short span of time (6
years), 11 syntheses of luotonin A have been reported
from different laboratories using a variety of elegant
The use of directing groups to facilitate lithiation,
followed by reaction of the organolithium reagents thus
obtained with electrophiles, has found a wide range of
applications in a variety of synthetic transformations.1
The process of directed ortho metalation using carboxa-
mides, carbamates, carboxylic acids, hydrazides, and
oxazolines as directing groups is one of the better known
methods for introducing various ortho substituents to the
aromatic nucleus.2 Although the great majority of studies
on ortho metalation have been carried out on benzene
rings,3 there are relatively few examples of the use of
group-directed lithiation of more complex heterocyclic
systems.3,4 Quinazolinones are known to undergo selec-
tive lithiation at the 2- and 8-positions5 (Figure 1), and
† NCL Communication No. 6661.
(1) (a) Mongin, F.; Queguiner, G. Tetrahedron 2001, 57, 4059. (b)
El-Hiti, G. A. Heterocycles 2000, 53, 1839. (c) Snieckus, V. Chem. Rev.
1990, 90, 879. (d) Beak, P.; Zajdel, W. J .; Reitz, D. B. Chem. Rev. 1984,
84, 471.
(2) (a) Mortier, J .; Moyroud, J .; Benneteau, B.; Cain, P. A. J . Org.
Chem. 1994, 59, 4042. (b) Fisher, L. E.; Caroon, J . M.; J ahangir, S. S.
R.; Lundberg, S.; Muchowski, J . M. J . Org. Chem. 1993, 58, 3643. (c)
Sibi, M. P.; Snieckus, V. J . Org. Chem. 1983, 48, 1935. (d) Beak, P.;
Brown, R. A. J . Org. Chem. 1982, 47, 34. (e) Slocum, D. W.; J enning,
C. A. J . Org. Chem. 1976, 41, 3653.
(6) (a) Smith, K.; El-Hiti, G. A.; Abdel-Megeed, M. F.; Abdo, M. A.
Collect. Czech. Chem. Commun. 1999, 64, 515. (b) Modesta, E. M.;
Avendano, C. J . Org. Chem. 1997, 62, 6424. (c) Rathman, T. L.; Sleevi,
M. C.; Krafft, M. E.; Wolfe, J . F. J . Org. Chem. 1980, 45, 2169. (d)
Murray, T. P.; Hey, J . V.; Portlock, D. E.; Wolfe, J . F. J . Org. Chem.
1974, 39, 595.
(7) (a) Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J . Heterocycles
1997, 46, 541. (b) Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J .
Heterocycles 1999, 51, 1883. (c) Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen,
Y.-J . Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 1999, 41, 547;
Chem. Abstr. 2000, 132, 234276. (d) Ma, Z.-Z.; Hano, Y.; Nomura, T.;
Chen, Y.-J . Phytochemistry 2000, 53, 1075.
(8) (a) Cagir, A.; J ones, S. H.; Gao, R.; Eisenhauer, B. M.; Hecht, S.
M. J . Am. Chem. Soc. 2003, 125, 13628. (b) Ma, Z.-Z.; Hano, Y.;
Nomura, T.; Chen, Y.-J . Bioorg. Med. Chem. Lett. 2004, 14, 1193.
(9) (a) Zhang, Q.; Rivkin, A.; Curran, D. P. J . Am. Chem. Soc. 2002,
124, 5774. (b) Blagg, B. S. J .; Boger, D. L. Tetrahedron 2002, 58, 6343.
(c) Curran, D. P.; Du, W. Org. Lett. 2002, 4, 3215. (d) Comins, D. L.;
Nolan, J . M. Org. Lett. 2001, 3, 4255. (e) Toyota, M.; Komori, C.; Ihara,
M. J . Org. Chem. 2000, 65, 7110.
(3) Romero, M.; Pujol, M. D. Synlett 2003, 173.
(4) (a) Turck, A.; Ple, N.; Mongin, F.; Queguiner, G. Tetrahedron
2001, 57, 4489. (b) Fukuda, T.; Mine, Y.; Iwao, M. Tetrahedron 2001,
57, 975. (c) Matsuzomo, M.; Fukuda, T.; Iwao, M. Tetrahedron Lett.
2001, 42, 7621. (d) Smith, K.; El-Hiti, G. A.; Abdel-Megeed, M. F.; Abdo,
M. A. J . Org. Chem. 1996, 61, 647 and 656. (e) Siulnier, M. G.; Gribble,
G. W. J . Org. Chem. 1992, 47, 757. (f) J ohnson, D. A.; Gribble, G. W.
Heterocycles 1986, 24, 2127.
(5) (a) Chapoulaud, V. G.; Salliot, I.; Ple, N.; Turck, A.; Queguiner,
G. Tetrahedron 1999, 55, 5389. (b) Dai, X.; Virgil, S. Tetrahedron:
Asymmetry 1999, 10, 25.
10.1021/jo040153v CCC: $27.50 © 2004 American Chemical Society
Published on Web 06/02/2004
J . Org. Chem. 2004, 69, 4563-4566
4563