averaging at least five different decays recorded around the
maximum of the absorption peak (680–720 nm). When neces-
sary, oxygen was removed by at least four freeze-thaw-pump
References
1
G. R. Newkome, C. N. Moorefield, F. V o¨ gtle, Dendrimers and
Dendrons: Concepts, Syntheses, Applications, VCH, Weinheim,
ꢁ6
cycles by means of a diffusive vacuum pump at 10 Torr
CH Cl , PhMe) or by bubbling argon for several minutes
through the solution (CH CN).
2
001.
(
2
2
2
(a) V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni and
M. Venturi, Acc. Chem. Res., 1998, 31, 26; (b) H. Frey, Angew.
Chem., Int. Ed., 1998, 37, 2193; (c) A. Archut and F. V o¨ gtle,
Chem. Soc. Rev., 1998, 27, 233; (d ) C. Gorman, Adv. Mater.,
3
Experimental uncertainties are estimated to be ꢄ7% for life-
time determinations, ꢄ20% for emission quantum yields, and
ꢄ2 nm for absorption and emission peaks.
1
998, 10, 295; (e) M. A. Hearshaw and J. R. Moss, Chem. Com-
mun., 1999, 1; ( f ) G. R. Newkome, E. He and C. N. Moorefield,
Chem. Rev., 1999, 99, 1689; (g) A. J. Berresheim, M. M u¨ ller and
K. M u¨ llen, Chem. Rev., 1999, 99, 1747; (h) M. Fischer and F.
V o¨ gtle, Angew. Chem., Int. Ed., 1999, 38, 884; (i) F. Zeng and
S. C. Zimmerman, Chem. Rev., 1997, 97, 1681; ( j) H.-F. Chow,
T. K.-K. Mong, M. F. Nongrum and C.-W. Wan, Tetrahedron,
Mesoporous silica glasses
A solution of tetramethoxysilane (TMOS) in MeOH was
added to a mixture of water, MeOH, nitric acid and forma-
1
998, 54, 8543; (k) D. K. Smith and F. Diederich, Chem. Eur.
J., 1998, 4, 1353; (l) A. W. Bosman, H. M. Janssen and E. W. Mei-
jer, Chem. Rev., 1999, 99, 1665; (m) A. Adronov and J. M. J.
Fr e´ chet, Chem. Commun., 2000, 1701; (n) K. Inoue, Prog. Polym.
Sci., 2000, 25, 453; (o) V. Balzani, P. Ceroni, A. Juris, M. Venturi,
S. Campagna, F. Puntoriero and S. Serroni, Coord. Chem. Rev.,
mide; the final composition of TMOS–MeOH–H
CHONH –HNO was 1 : 10 : 5 : 1 : 0.063 (molar ratio).
2
O–
3
6
2
3
The reaction was followed by FTIR, which showed that full
hydrolysis of TMOS occurred within a few seconds. The con-
densation reaction then took place and gelation occured within
2
001, 219–221, 545; (p) S. M. G. Grayson and J. M. J. Fr e´ chet,
Chem. Rev., 2001, 101, 3819.
ꢀ
2
gels were cast in small PMMA round boxes (diameter: 25 mm,
to 3 h, depending on the temperature, normally at 40 C. The
3
4
For reviews on dendritic encapsulation, see: (a) S. Hecht and
J. M. J. Fr e´ chet, Angew. Chem., Int. Ed., 2001, 40, 74; (b) C. B.
Gorman and J. C. Smith, Acc. Chem. Res., 2001, 34, 60.
(a) C. J. Hawker, K. L. Wooley and J. M. J. Fr e´ chet, J. Am.
Chem. Soc., 1993, 115, 4375; (b) C. Devadoss, P. Bharathi and
J. S. Moore, Angew. Chem., Int. Ed. Engl., 1997, 36, 1633; (c)
D. K. Smith and L. M u¨ ller, Chem. Commun., 1999, 1915.
(a) R.-H. Jin, T. Aida and S. Inoue, J. Chem. Soc., Chem. Com-
mun., 1993, 1260; (b) F. V o¨ gtle, M. Plevoets, M. Nieger, G. C.
Azzellini, A. Credi, L. De Cola, V. De Marchis, M. Venturi and
V. Balzani, J. Am. Chem. Soc., 1999, 121, 6290; (c) J. Issberner,
F. V o¨ gtle, L. De Cola and V. Balzani, Chem. Eur. J., 1997, 3,
ꢀ
height: 8 mm) and dried at 40 C in a drying oven for 2 days.
During this step extensive shrinkage occurred, leading to
pieces of transparent xerogels of 10 mm in diameter and
0
.4 mm in height. These xerogel pieces were further heat trea-
ꢀ
ted at 500–600 C. The samples were mesoporous as shown by
physisorption measurements. The mean pore diameter was
5
3
.46 nm and the maximum pore diameter was 4.9 nm with a
3
ꢁ1
porous volume of 0.2133 cm g . The resulting silica glasses
were prepared by the sol-gel process and soaked in a concen-
trated THF solution of compound 1, 2, 3 or 4. After 30 min,
7
06; (d ) M. Plevoets, F. V o¨ gtle, L. De Cola and V. Balzani,
New J. Chem., 1999, 23, 63; (e) M. S. Matos, J. Hofkens, W. Ver-
heijen, F. C. De Schryver, S. Hecht, K. W. Pollak, J. M. J. Fre-
chet, B. Forier and W. Dehaen, Macromolecules, 2000, 33, 2967.
J.-F. Nierengarten, Chem. Eur. J., 2000, 6, 3667.
(a) G. Accorsi, N. Armaroli, J.-F. Eckert and J.-F. Nierengarten,
Tetrahedron Lett., 2002, 43, 65; (b) B. Dardel, D. Guillon, B.
Heinrich and R. Deschenaux, J. Mater. Chem., 2001, 11, 2814;
the samples were removed from the solutions and dried at
ꢀ
4
0 C for 1 h.
6
7
Optical limiting measurements
(c) F. Langa, M. J. Gomez-Escalonilla, E. Diez-Barra, J. C. Gar-
cia-Martinez, A. de la Hoz, J. Rodriguez-Lopez, A. Gonzalez-
To study the optical limiting properties, the transmission of the
doped glass samples was determined as a function of the
incoming fluence at room temperature. A frequency-doubled
Cortes and V. Lopez-Arza, Tetrahedron Lett., 2001, 42, 3435;
d ) J. L. Segura, R. Gomez, N. Martin, C. Luo, A. Swartz and
(
D. M. Guldi, Chem. Commun., 2001, 707; (e) A. G. Avent,
P. R. Birkett, F. Paolucci, S. Roffia, R. Taylor and N. K. Wach-
ter, J. Chem. Soc., Perkin Trans. 2, 2000, 1409; ( f ) A. Herzog,
A. Hirsch and O. Vostrowsky, Eur. J. Org. Chem., 2000, 171;
(g) F. Djojo, E. Ravanelli, O. Vostrowsky and A. Hirsch, Eur.
J. Org. Chem., 2000, 1051; (h) B. Dardel, R. Deschenaux, M. Even
and E. Serrano, Macromolecules, 1999, 32, 5193; (i) M. Brettreich
and A. Hirsch, Tetrahedron Lett., 1998, 39, 2731; ( j) J.-F. Nieren-
garten, T. Habbicher, R. Kessinger, F. Cardullo, F. Diederich, V.
Gramlich, J.-P. Gisselbrecht, C. Boudon and M. Gross, Helv.
Chim. Acta., 1997, 80, 2238; (k) V. J. Catalano and N. Parodi,
Inorg. Chem., 1997, 36, 537; (l) C. J. Hawker, K. L. Wooley
and J. M. J. Fr e´ chet, Chem. Commun., 1994, 925; (m) K. L. Woo-
ley, C. J. Hawker, J. M. J. Fr e´ chet, F. Wudl, G. Srdanov, S. Shi,
C. Li and M. Kao, J. Am. Chem. Soc., 1993, 115, 9836.
(a) J.-F. Nierengarten, D. Felder and J.-F. Nicoud, Tetrahedron
Lett., 1999, 40, 269; (b) J.-F. Nierengarten, D. Felder and J.-F.
Nicoud, Tetrahedron Lett., 1999, 40, 273; (c) N. Armaroli, C.
Boudon, D. Felder, J.-P. Gisselbrecht, M. Gross, G. Marconi,
J.-F. Nicoud, J.-F. Nierengarten and V. Vicinelli, Angew. Chem.,
Int. Ed., 1999, 38, 3730; (d ) D. Felder, J.-L. Gallani, D. Guillon,
B. Heinrich, J.-F. Nicoud and J.-F. Nierengarten, Angew. Chem.,
Int. Ed., 2000, 39, 201.
(
active/passive mode locked) Nd:YAG laser at 532 nm with
a pulse duration of 30 ps and a repetition rate of 5 Hz was used
for these measurements. At this wavelength, the linear trans-
mission of the samples was typically 40 to 60%. To take into
account the intensity fluctuations of the laser source, a refer-
ence beam created by a beam splitter from the same laser beam
as the excitation branch was used. The exciting pulses were
focussed onto the sample by a lens of f ¼ 16 cm into a spot
2
of 6400 mm . The transmitted light of the measurement pulses,
as well as that of the reference pulses, was sent onto the same
optical multichannel analyzer. The incident intensity at the
sample position was changed by means of calibrated neutral
density filters.
8
Acknowledgements
This work was supported by the CNRS, the French Ministry
of Research (ACI Jeunes Chercheurs) and the CNR. We thank
Prof. A. Juris (University of Bologna) for allowing the use
of the IR spectrofluorimeter, L. Oswald and M. Minghetti
for technical help, and M. Schmitt for NMR measurements.
Y. R. thanks the French Ministry of research, G. A. the
MIUR (Progetto 5%), A. C. the INTAS (RFBR 00-03-
9
0
(a) J.-F. Nierengarten, D. Felder and J.-F. Nicoud, Tetrahedron
Lett., 2000, 41, 41; (b) D. Felder, H. Nierengarten, J.-P. Gissel-
brecht, C. Boudon, E. Leize, J.-F. Nicoud, M. Gross, A. Van
Dorsselaer and J.-F. Nierengarten, New J. Chem., 2000, 24, 687;
(
c) J.-F. Nierengarten, J.-F. Eckert, Y. Rio, M. P. Carreon,
J.-L. Gallani and D. Guillon, J. Am. Chem. Soc., 2001, 123, 9743.
Y. Rio, J.-F. Nicoud, J.-L. Rehspringer and J.-F. Nierengarten,
Tetrahedron Lett., 2000, 41, 10 207.
1
3
3016), and G. K. the ERASMUS/SOCRATES programme
for their fellowships. N. A. and A. V. D. are grateful to EU
for the TMR contract no. CT98-0226.
11 M. J. Hannon, P. C. Mayers and P. C. Taylor, J. Chem. Soc., Per-
kin Trans. 1, 2000, 1881.
New J. Chem., 2002, 26, 1146–1154
1153