Published on Web 12/21/2007
Origins of Selectivity for the [2+2] Cycloaddition of
r,â-unsaturated Ketones within a Porous Self-assembled
Organic Framework
Jun Yang,† Mahender B. Dewal,† Salvatore Profeta, Jr.,† Mark D. Smith,†
Youyong Li,‡ and Linda S. Shimizu*,†
Department of Chemistry and Biochemistry, UniVersity of South Carolina, Columbia,
South Carolina 29208, Materials and Process Simulation Center,
California Institute of Technology, California 91125
Received August 9, 2007; E-mail: shimizul@mail.chem.sc.edu
Abstract: This article studies the origins of selectivity for the [2+2] cycloadditions of R,â-unsaturated ketones
within a porous crystalline host. The host, formed by the self-assembly of a bis-urea macrocycle, contains
accessible channels of ∼6 Å diameter and forms stable inclusion complexes with a variety of cyclic and
acyclic R,â-unsaturated ketone derivatives. Host 1 crystals provide a robust confined reaction environment
for the highly selective [2+2] cycloaddition of 3-methyl-2-cyclopentenone, 2-cyclohexenone, and 2-methyl-
2-cyclopentenone, forming their respective exo head-to-tail dimers in high conversion. The products are
readily extracted from the self-assembled host and the crystalline host can be efficiently recovered and
reused. Molecular modeling studies indicate that the origin of the observed selectivity is due to the excellent
match between the size and shape of these guests to dimensions of the host channel and to the
preorganization of neighboring enones into favorable reaction geometries. Small substrates, such as acrylic
acid and methylvinylketone, were bound by the host and were protected from photoreactions. Larger
substrates, such as 4,4-dimethyl-2-cyclohexenone and mesityl oxide, do not undergo selective [2+2]
cycloaddition reactions. In an effort to understand these differences in reactivity, we examined these host-
guest complexes by thermogravimetric analysis (TGA), NMR, powder X-ray diffraction (PXRD) and molecular
modeling.
reaction environments.4 Often, the reactions inside these de-
signed environments proceed at enhanced rates and exhibit
Introduction
unusual selectivity,1a which is generally attributed to entropic
effects.5 Molecular hosts, though often challenging to synthesize,
allow exquisite control of the cavity dimensions and properties
that may translate into control of the reaction geometry and
selectivity. Conversely, porous materials, such as zeolites,6
mesoporous silica,7 and coordination polymers8 are readily
There is great interest in developing synthetic hosts that
possess the extraordinary efficiency and specificity of enzymes.1
A number of groups have designed and synthesized hollow host
molecules2,3 to facilitate the reaction of encapsulated guests.
Others have explored the use of porous materials as confined
† University of South Carolina.
‡ California Institute of Technology.
(4) (a) Turro, N. J. Photochem. Photobiol. A 1996, 100, 53-56. (b) Rama-
murthy, V.; Eaton, D. F.; Caspar, J. V. Acc. Chem. Res. 1992, 25, 299-
307. (c) Hashimoto, S. J. Photochem. Photobiol., C. 2003 4, 19-49. (d)
Garcia, H.; Roth, H. D. Chem. ReV. 2002, 102, 3947-4007. (e) Tung, C.
H.; Wu, L. Z.; Zhang, L. P.; Chen, B. Acc. Chem. Res. 2003, 36, 39-40.
(f) Kaupp G. Top. Curr. Chem. 2005, 254, 95-183. (g) MacGillivray, L.
R.; Papaefstathious, G. S.; Friscic, T.; Varshney, D. B.; Hamilton, T. D.
Top. Curr. Chem. 2004, 248, 201-221. (h) Tanaka, K.; Mochizuki, E.;
Yasui, N.; Kai, Y.; Miyahara, I.; Hirotsu, K.; Toda, F. Tetrahedron 2000,
56, 6853-6865. (i) Yoshizawa, M.; Takeyama, Y.; Okano, T.; Fujita, M.
J. Am. Chem. Soc. 2003, 125, 3243-3247. (j) Madhavan, D.; Pitchumani,
K. Photochem. Photobiol. Sci. 2002, 1, 991-995. (k) Usami, H.; Takagi,
K.; Sawaki, Y. Chem. Lett. 1992, 1405-1408.
(1) (a) Vriezema, D. M.; Aragones, M. C.; Elemans, J. A. A. W.; Cornelissen,
J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Chem. ReV. 2005, 105, 1445-
1489. (b) Kirby, A. J. Angew. Chem., Int. Ed. Engl. 1996, 35, 707-24.
(2) (a) Natarajan, A.; Kaanumalle, L. S.; Jockusch, S.; Gibb, C. L. D.; Gibb,
B. C.; Turro, N. J.; Ramamurthy, V. J. Am. Chem. Soc. 2007, 129, 4132-
4133. (b) Rebek, J. J. Angew. Chem., Int. Ed. 2005, 44, 2068-2078. (c)
Kang, J.; Rebek, J., Jr. Nature 1997, 385, 50-52. (d) Takahashi, K. Chem.
ReV. 1998, 98, 2013-2033. (e) Yoshizawa, M.; Fujita, M. Pure Appl. Chem.
2005, 77, 1107-1112. (f) Breslow, R.; Dong, S. D. Chem. ReV. 1998, 98,
1997-2011. (g) Marty, M.; Clyde-Watson, Z.; Twyman, L. J.; Nakash,
M.; Sanders, J. K. M. Chem. Comm. 1998, 2265-2266. (h) Nakash, M.;
Sanders, J. K. M. J. Org. Chem. 2000, 65, 7266-7271. (i) Leung, D. H.;
Fielder, D.; Bergman, R. G.; Raymond, K. N. Ang. Chem. Int. Ed. 2004,
43, 963-966. (j) Kang, Y.; Zyryanov, G. V.; Rudkevich, D. M. Chem.
Eur. J. 2005, 11, 1924-1932. (k) Warmuth, R.; Makowiec, S. J. Am. Chem.
Soc. 2005, 127, 1084-1085.
(5) Cacciapaglia, R.; Di Stefano, S.; Mandolini, L. Acc. Chem. Res. 2004, 37,
113-122.
(6) (a) Tao, Y. S.; Kanoh, H.; Abrams, L.; Kaneko, K. Chem. ReV. 2006, 106,
896-910. (b) Cundy, C. S.; Cox, P. A. Microporous Mesoporous Mater.
2005, 82, 1-78.
(3) (a) Yoshizawa, M.; Fujita, M. Pure Appl. Chem. 2005, 77, 1107-1112.
(b) Nishioka, Y.; Yamaguchi, T.; Yoshizawa, M. Fujita, M. J. Am. Chem.
Soc. 2007, 129, 7000-7001. (c) Karthikeyan, S.; Ramamurthy, V. J. Org.
Chem. 2007, 72, 452-458. (d) Wu, C.-D.; Lin, W. Angew. Chem., Int. Ed.
2007, 46, 1075-1078. (e) Dybstev, D. N.; Nuzhdin, A. L.; Chun, H.;
Bryliakov, K. P.; Talsi, E. P.; Fedin, V. P.; Kim, K. Angew. Chem., Int.
Ed. 2007, 45, 916-920.
(7) Vinu, A.; Hossain, K. Z.; Ariga, K. J. Nanosci. Nanotech. 2005, 5, 347-
371.
(8) (a) Suslick, K. S.; Bhyrappa, P.; Chou, J. H.; Kosal, M. E.; Nakagaki, S.;
Smithenry, D. W.; Wilson, S. R. Acc. Chem. Res. 2005, 38, 283-291. (b)
Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keefe, M.; Yaghi, O. M. Acc.
Chem. Res. 2005, 28, 176-182.
9
612
J. AM. CHEM. SOC. 2008, 130, 612-621
10.1021/ja076001+ CCC: $40.75 © 2008 American Chemical Society