Paper
RSC Advances
1
4 W. Chen, S. Wang, G. Yang, S. Chen, K. Ye, Z. Hu, Z. Zhang
and Y. Wang, J. Phys. Chem. C, 2016, 120, 587.
Conclusions
In summary, acridone derivatives with electron-donating 15 T. Suzuki, H. Okada, T. Nakagawa, K. Komatsu, C. Fujimoto,
groups at the amino position were synthesized and their
H. Kagi and Y. Matsuo, Chem. Sci., 2018, 9, 475.
structural and photophysical properties were investigated. The 16 Y. Matsuo, Y. Wang, H. Ueno, T. Nakagawa and H. Okada,
crystal structural analysis reveals that the acridone moiety tends
Angew. Chem., Int. Ed., 2019, 58, 8762.
to form p–p stacking with the assistant of the pending phenyl 17 D. A. Vezzu, J. C. Deaton, M. Shayeghi, Y. Li and S. Huo, Org.
rings to form C–H/O hydrogen bonds with the carbonyl of
Lett., 2009, 11, 4310.
acridone, which provides a good strategy in the design of acri- 18 Q. Qi, J. Qian, X. Tan, J. Zhang, L. Wang, B. Xu, B. Zou and
done based crystalline materials. Although the strong electron-
W. Tian, Adv. Funct. Mater., 2015, 25, 4005.
donating triphenylamine is connected to acridone at the amino 19 S. Jiang, J. Wang, Q. Qi, J. Qian, B. Xu, F. Li, Q. Zhou and
position with reduced conjugation, ICT process is observed.
W. Tian, Chem. Commun., 2019, 55, 3749.
Furthermore, the different aggregation states with the variation 20 Y. Lin, Y. Li and X. Zhan, Chem. Soc. Rev., 2012, 41, 4245.
of water content in THF result in a tuneable blue and green AIEE 21 Y. Chen, X. Wan and G. Long, Acc. Chem. Res., 2013, 46, 2645.
phenomenon. The size of the spacer between acridone and the 22 F. Liu, S. Li, R. Duan, S. Qiu, Y. Yi, S. Wang and X. Zhu, Sci.
pending amine plays an important role in the determination of
China: Chem., 2018, 61, 418.
AIEE or aggregation caused emission quenching. This work will 23 C. Zhang and X. Zhu, Acc. Chem. Res., 2017, 50, 1342.
contribute to the design of novel AIEE materials and explore the 24 M. Kivala and F. Diederich, Acc. Chem. Res., 2009, 42(2), 235.
eld of acridone functionalization.
25 M. Krick, J. J. Holstein, A. Wuttke, R. A. Mata and
G. H. Clever, Eur. J. Org. Chem., 2017, 5141.
2
6 R. Liu, H. Gao, L. Zhou, Y. Ji and G. Zhang, ChemistrySelect,
Conflicts of interest
2019, 4, 7797.
There are no conicts to declare.
27 V. E. Zavodnik, L. A. Chetkina and G. A. Val'kova,
Kristallograya, 1981, 26, 392.
2
2
8 R. Taylor and O. Kennard, J. Am. Chem. Soc., 1982, 104, 5063.
9 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato,
A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,
B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov,
J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini,
F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson,
D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, K. Throssell,
J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro,
M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,
V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo,
R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma,
O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16,
Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
Acknowledgements
We are grateful to the Jiangsu Specially Appointed Professor
Plan for nancial support.
References
1
2
J. P. Michael, Nat. Prod. Rep., 2008, 25, 166.
P. Nikolov, I. Petkova, G. K ¨o hler and S. Stojanov, J. Mol.
Struct., 1998, 448, 247.
3
4
S. E. Garc ´ı a-Garrido, C. Caltagirone, M. E. Light and
P. A. Gale, Chem. Commun., 2007, 1450.
I. M ´o cz ´a r, P. Huszthy, A. Mezei, M. K ´a d ´a r, J. Nyitrai and
K. T ´o th, Tetrahedron, 2010, 66, 350.
5
6
J. Kaur and P. Singh, Chem. Commun., 2011, 47, 4472.
A. Kumar, P. Prasher and P. Singh, Org. Biomol. Chem., 2014,
12, 3071.
7
Y. Xia, W. He, J. Li, L. Zeng, T. Chen, Y. Liao, W. Sun, J. Lan,
S. Zhuo, J. Zhang, H. Yang and J. Chen, Anal. Chem., 2019, 91,
8406.
8
9
B. K. Sharma, A. M. Shaikh, N. Agarwal and R. M. Kamble, 30 A. Slodek, A. Maro n´ , M. Paj ˛a k, M. Matussek, I. Grudzka-Flak,
´
RSC Adv., 2016, 6, 17129.
J. G. Małecki, A. Switlicka, S. Krompiec, W. Danikiewicz,
P. Pander, A. Swist, R. Motyka, J. Soloducho, F. B. Diasa and
P. Data, J. Mater. Chem. C, 2018, 6, 5434.
M. Grela, I. Gryca and M. Penkala, Chem.–Eur. J., 2018, 24,
9622.
10 Q. T. Siddiqui, A. A. Awasthi, P. Bhui, M. Muneer, 31 Q. Wu, T. Zhang, Q. Peng, D. Wang and Z. Shuai, Phys. Chem.
K. R. S. Chandrakumar, S. Bose and N. Agarwal, J. Phys.
Chem. C, 2019, 123, 1003.
1 R. Liu, W. Ding, Q. Zhang, Y. Song and G. Zhang,
ChemistrySelect, 2019, 4, 10536.
2 K. D. Th ´e riault, C. Radford, M. Parvez, B. Heyne and
Chem. Phys., 2014, 16, 5545.
32 K. Rakstys, A. Abate, M. I. Dar, P. Gao, V. Jankauskas,
G. Jacopin, E. Kamarauskas, S. Kazim, S. Ahmad,
M. Gr ¨a tzel and M. K. Nazeeruddin, J. Am. Chem. Soc., 2015,
137, 16172.
1
1
1
T. C. Sutherland, Phys. Chem. Chem. Phys., 2015, 17, 20903. 33 J. Chen, S. Ko, L. Liu, Y. Sheng, H. Han and X. Li, New J.
3 R. Liu, G. Zhu, Y. Ji and G. Zhang, Eur. J. Org. Chem., 2019, Chem., 2015, 39, 3736.
217.
3
This journal is © The Royal Society of Chemistry 2020
RSC Adv., 2020, 10, 7092–7098 | 7097