Organic Letters
Letter
(
9) For reviews, see: (a) Waser, J. Top. Curr. Chem. 2015, 373, 187−
ASSOCIATED CONTENT
Supporting Information
■
2
(
22. (b) Waser, J. Synlett 2016, 27, 2761−2773.
*
S
10) (a) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res.
2012, 45, 788−802. (b) De Sarkar, S.; Liu, W.; Kozhushkov, S. I.;
Ackermann, L. Adv. Synth. Catal. 2014, 356, 1461−1479.
(11) (a) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc.
theoretical results (PDF)
2
007, 129, 9879−9884. (b) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.;
Breazzano, S. P.; Saunders, L. B.; Yu, J.- Q. J. Am. Chem. Soc. 2007, 129,
3
2
510−3511. (c) Wang, D.-H.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc.
008, 130, 17676−17677. (d) Arroniz, C.; Denis, J. G.; Ironmonger, A.;
AUTHOR INFORMATION
■
*
Rassias, G.; Larrosa, I. Chem. Sci. 2014, 5, 3509−3514. (e) Arroniz, C.;
Ironmonger, A.; Rassias, G.; Larrosa, I. Org. Lett. 2013, 15, 910−913.
ORCID
(f) Wu, Z.; Chen, S.; Hu, C.; Li, Z.; Xiang, H.; Zhou, X. ChemCatChem
2013, 5, 2839−2842. (g) Zhu, C.; Zhang, Y.; Kan, J.; Zhao, H.; Su, W.
Org. Lett. 2015, 17, 3418−3421. (h) Qin, X.; Li, Z.; Huang, Q.; Liu, H.;
Wu, D.; Guo, Q.; Lan, J.; Wang, R.; You. Angew. Chem., Int. Ed. 2015, 54,
Notes
7
167−7170. (i) Huang, L.; Hackenberger, D.; Gooßen, L. J. Angew.
Chem., Int. Ed. 2015, 54, 12607−12611. (j) Pichette Drapeau, M.;
Gooßen, L. J. Chem. - Eur. J. 2016, 22, 18654−18677. (k) Simonetti, M.;
Cannas, D. M.; Panigrahi, A.; Kujawa, S.; Kryjewski, M.; Xie, P.; Larrosa,
I. Chem. - Eur. J. 2017, 23, 549−553. (l) Huang, L.; Weix, D. J. Org. Lett.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the European Research Council (Advanced Grant No.
21066), MINECO/FEDER, UE (CTQ2016-75960-P), MINE-
CO-Severo Ochoa Excellence Accreditation 2014-2018, SEV-
013-0319), and CERCA Program/Generalitat de Catalunya for
■
3
2
016, 18, 5432−5435. (m) Johnston, A. J. S.; Ling, K. B.; Sale, D.;
Lebrasseur, N.; Larrosa, I. Org. Lett. 2016, 18, 6094−6097. (n) Biafora,
A.; Krause, T.; Hackenberger, D.; Belitz, F.; Gooßen, L. J. Angew. Chem.,
Int. Ed. 2016, 55, 14752−14755. (o) Mei, R.; Zhu, C.; Ackermann, L.
Chem. Commun. 2016, 52, 13171−13174. (p) Mandal, R.; Sundararaju,
B. Org. Lett. 2017, 19, 2544−2547.
2
financial support. We also thank the ICIQ X-ray diffraction unit
and CELLEX-ICIQ HTE laboratory.
(
12) Pd-catalyzed alkynylation of o-carboranyl carboxylic acids,
followed by decarboxylation: Quan, Y.; Tang, C.; Xie, Z. Chem. Sci.
016, 7, 5838−5845.
13) Warratz, S.; Kornhaaß, C.; Cajaraville, A.; Niepo
D.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 5513−5517.
14) Ru-catalyzed alkynylation of benzoic acids with bromoalkynes
with concomitant cyclization to form phthalides; see ref 11o.
15) Chen, C.; Liu, P.; Tang, J.; Deng, G.; Zeng, X. Org. Lett. 2017, 19,
474−2477.
16) (a) Mei, R.; Zhang, S.-K.; Ackermann, L. Org. Lett. 2017, 19,
171−3174. (b) See also: Huang, H.; Nakanowatari, S.; Ackermann, L.
Org. Lett. 2017, 19, 4620−4623. (c) Chen, C.; Zeng, X. Eur. J. Org. Chem.
017, 2017, 4749−4752.
17) (a) Wang, S.; Li, P.; Yu, L.; Wang, L. Org. Lett. 2011, 13, 5968−
971. (b) A similar reaction has been observed with benzoic acids,
2
(
REFERENCES
■
̈
tter, B.; Stalke,
(
1) (a) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem.
Int. Ed. 1997, 36, 1740−1742. (b) Satoh, T.; Inoh, J.-I.; Kawamura, Y.;
Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71,
239−2246. (c) See also: Huang, L.-H.; Sun, X.-D.; Li, Q.; Qi, C.-Z. J.
Org. Chem. 2014, 79, 6720−6725.
2) (a) Huang, L.-H.; Li, Q.; Wang, C.; Qi, C.-Z. J. Org. Chem. 2013, 78,
030−3038. (b) Wang, L.-L.; Yang, M.-X.; Liu, X.-C.; Song, H.; Han, L.;
Chu, W.-Y.; Sun, Z.-Z. Appl. Organomet. Chem. 2016, 30, 680−683.
c) Shi, R.; Lu, L.; Xie, H.; Yan, J.; Xu, T.; Zhang, H.; Qi, X.; Lan, Y.; Lei,
(
2
(
2
(
3
(
3
(
2
(
5
A. Chem. Commun. 2016, 52, 13307−13310. (d) Li, Z.-X.; Sun, S.-Y.;
Qiao, H.-J.; Yang, F.; Zhu, Y.; Kang, J.-X.; Wu, Y.-S.; Wu, Y.-J. Org. Lett.
2
016, 18, 4594−4597. (e) Iwasaki, M.; Kaneshika, W.; Tsuchiya, Y.;
Nakajima, K.; Nishihara, Y. J. Org. Chem. 2014, 79, 11330−11338.
3) (a) Wang, F.; Song, G.; Du, Z.; Li, X. J. Org. Chem. 2011, 76, 2926−
932. (b) Karthikeyan, J.; Yoshikai, N. Org. Lett. 2014, 16, 4224−4227.
c) Li, X.-T.; Gong, X.; Zhao, M.; Song, G.-Y.; Deng, J.; Li, X.-W. Org.
Lett. 2011, 13, 5808−5811.
4) Mochida, S.; Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. Chem. -
Asian J. 2010, 5, 847−851.
5) A related Rh(III)-catalyzed reaction of 1-naphthylamine
derivatives gives 1H-benzo[de]quinolines: Zhang, X.; Si, W.; Bao, M.;
Asao, N.; Yamamoto, Y.; Jin, T. Org. Lett. 2014, 16, 4830−4833.
6) Thirunavukkarasu, V. C.; Donati, M.; Ackermann, L. Org. Lett.
012, 14, 3416−3419.
7) (a) Ano, Y.; Tobisu, M.; Chatani, N. Synlett 2012, 23, 2763−2767.
b) Yi, J.; Yang, L.; Xia, C.; Li, F. J. Org. Chem. 2015, 80, 6213−6221.
c) Landge, V. G.; Jaiswal, G.; Balaraman, E. Org. Lett. 2016, 18, 812−
15. (d) Landge, V. G.; Midya, S. P.; Rana, J.; Shinde, D. R.; Balaraman,
leading ultimately to isocoumarins in the presence of Pd catalysts: Jiang,
(
(
(
2
(
19) Liu, Y.-J.; Xu, H.; Kong, W.-J.; Shang, M.; Dai, H.-X.; Yu, J.-Q.
Nature 2014, 515, 389−393.
20) Gonzalez, J. J.; Francesch, A.; Car
Org. Chem. 1998, 63, 2854−2857.
21) (a) Allen, C. F. H.; VanAllan, J. A. J. Org. Chem. 1952, 17, 845−
54. (b) Kotha, S.; Meshram, M. Synthesis 2014, 46, 1525−1531.
c) Lahore, S.; Narkhede, U.; Merlini, L.; Dallavalle, S. J. Org. Chem.
(
́
́
denas, D. J.; Echavarren, A. M. J.
(
(
8
(
2
(
013, 78, 10860−10866. (d) Yamaguchi, M.; Higuchi, M.; Tazawa, K.;
(
2
(
(
(
8
Manabe, K. J. Org. Chem. 2016, 81, 3967−3974. (e) Ogawa, N.;
Yamaoka, Y.; Yamada, K.; Takasu, K. Org. Lett. 2017, 19, 3327−3330.
−1
(
22) An activation energy of 24 kcal·mol was determined for the
ruthenation reaction, and the rate-determining step was insertion of the
alkyne (25.7 kcal·mol overall barrier): Yu, J.-L.; Zhang, S.-Q.; Hong, X.
J. Am. Chem. Soc. 2017, 139, 7224−7243.
(
programs. The geometries were optimized at the PBE0/SDD*(Ru, K,
Br), 6-31+G(d,p) level of theory and ultrafine integration grid. Solvent
effects were taken into account by means of the PCM model and CH Cl
as a solvent. Additional single-point calculations were performed with
the double-hybrid B2GP-PLYP-D3(BJ) functional and a larger basis set
combination, which comprises the def2-QZVP basis set for Ru, K, and
−1
E. Org. Lett. 2016, 18, 5252−5255. (e) Ruan, Z.; Sauermann, N.;
23) DFT calculations were carried out using the Gaussian09 suite of
Manoni, E.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 3172−3176.
(
2
2
(
4
2
5
2
2
f) Khake, S. M.; Soni, V.; Gonnade, R. G.; Punji, B. Chem. - Eur. J. 2017,
3, 2907−2914. (g) Cera, G.; Haven, T.; Ackermann, L. Chem. - Eur. J.
2
2
017, 23, 3577−3582.
8) (a) Xie, F.; Qi, Z.; Yu, S.; Li, X. J. Am. Chem. Soc. 2014, 136, 4780−
787. (b) Feng, C.; Loh, T.-P. Angew. Chem., Int. Ed. 2014, 53, 2722−
726. (c) Feng, C.; Feng, D.; Luo, Y.; Loh, T.-P. Org. Lett. 2014, 16,
956−5959. (d) Boobalan, R.; Gandeepan, P.; Cheng, C.-H. Org. Lett.
18
Br and 6-311+G(2d,p) for the remaining elements.
D
Org. Lett. XXXX, XXX, XXX−XXX