10.1002/cmdc.202000148
ChemMedChem
FULL PAPER
SDS-PAGE. Protein concentration was determined by the Bradford
assay.[28] Deacylase activity of sirtuin isotypes could be inhibited with
nicotinamide and was shown to be NAD+-dependent.
[3]
[4]
[5]
Y.-B. Teng, H. Jing, P. Aramsangtienchai, B. He, S. Khan, J. Hu, H. Lin,
Q. Hao, Sci. Rep. 2015, 5, 8529.
K. J. Bitterman, R. M. Anderson, H. Y. Cohen, M. Latorre-Esteves, D. A.
Sinclair, J. Biol. Chem. 2002, 277, 45099–45107.
Fluorescence-based activity assay: The inhibitory effect of compounds
on Sirt1–3 was detected via a previously reported fluorescence-based
assay.[29] The synthetic substrate Z-Lys(acetyl)-AMC (ZMAL) is
deacetylated by sirtuins, followed by tryptic digestion and thereby release
of 7-aminomethylcumarin, leading to a fluorescent readout. Inhibition was
determined by comparing percentage substrate conversion to a DMSO
control after subtraction of the blank fluorescence signal. All compounds
were tested at 100 µM or 50 µM and 10 µM respectively. For compounds
that showed more than 70% inhibition at 10 µM an IC50 value was
determined. IC50 values were calculated with OriginPro 9.0 G using a non-
linear regression to fit the dose response curve (Figure S6). An enzyme-
free blank control and a 100% conversion control using AMC instead of
ZMAL were measured as well. Inhibition measurements were performed
in biological duplicates for all compounds.
a) AOP Orphan Pharmaceuticals AG, to be found under
orphan-pharmaceuticals-ag-to-acquire-selisistat-a-clinical-stage-drug-
candidate-for-the-treatment-of-huntingtons-disease-hd, 2017; b) S. D.
Süssmuth et al., Br. J. Clin. Pharmacol. 2015, 79, 465–476.
[6]
[7]
[8]
[9]
T. Ai, D. J. Wilson, S. S. More, J. Xie, L. Chen, J. Med. Chem. 2016, 59,
2928–2941.
S. Swyter, M. Schiedel, D. Monaldi, S. Szunyogh, A. Lehotzky, T. Rumpf,
J. Ovádi, W. Sippl, M. Jung, Philos. Trans. R. Soc. B 2018, 373.
C. W. Grathwol, N. Wössner, S. Swyter, R. K. Hofstetter, A. Bodtke, M.
Jung, A. Link, Beilstein J. Org. Chem. 2019, 15, 2170–2183.
Molecular Modeling: All calculations were performed using the Molecular
Operating Environment (MOE) software suite (version 2019.01).[30] If not
explicitly stated otherwise, default settings and parameters were used.
C. W. Grathwol, N. Chrysochos, B. J. Elvers, A. Link, C. Schulzke, Acta
Crystallogr. Sect. E: Crystallogr. Commun. 2019, 75, 1828–1832.
[10] a) P. Leippe, J. A. Frank, Curr. Opin. Struct. Biol. 2019, 57, 23–30; b) P.
Paoletti, G. C. R. Ellis-Davies, A. Mourot, Nat. Rev. Neurosci. 2019, 20,
514–532; c) H. Cheng, J. Yoon, H. Tian, Coord. Chem. Rev. 2018, 372,
66–84; d) K. Hüll, J. Morstein, D. Trauner, Chem. Rev. 2018, 118,
10710–10747; e) I. Tochitsky, M. A. Kienzler, E. Isacoff, R. H. Kramer,
Chem. Rev. 2018, 118, 10748–10773; f) M. Zhu, H. Zhou, Org. Biomol.
Chem. 2018, 16, 8434–8445; g) M. M. Lerch, M. J. Hansen, G. M. van
Dam, W. Szymanski, B. L. Feringa, Angew. Chem. Int. Ed. 2016, 55,
10978–10999; Angew. Chem. 2016, 128, 11140–11163.
General preparation: For molecular docking of ligands to human Sirt2, a
crystal structure with open-state selectivity pocket and bound ligand was
used (PDB: 5MAT, 4RMG). Both systems were prepared by applying
AMBER14 force field parameters, adding hydrogen atoms and protonation
with Protonate3D (pH 7.4). Missing flexible protein loops were rebuilt,
followed by a restraint minimization of the protein-ligand complex.
Molecular docking: Ligands used for docking experiments were prepared
by generating three-dimensional structures from SMILES, taking into
account possible protonation states and both E/Z-isomers for azo groups.
AM1-BCC charges were applied. The binding site was defined as all
residues within 4.5 Å of the bound ligand in the crystal structure. Docking
was performed using a two-stage protocol with placement of 30 poses by
Triangle Matcher and London dG scoring, followed by an Induced Fit
refinement and more accurate MM/GBVI scoring. For each ligand, a total
of 10 final poses were obtained and visually inspected. For
pharmacophore-guided molecular docking, a sphere with 1.7 Å was
placed on the amide group of NAD+ (PDB: 4RMG), which was encoded by
the SMARTS expression “[#7X3H2][#6X3](=[#8X1])[#6]”.
[11] a) J. Broichhagen, J. A. Frank, D. Trauner, Acc. Chem. Res. 2015, 48,
1947–1960; b) W. Szymański, J. M. Beierle, H. A. V. Kistemaker, W. A.
Velema, B. L. Feringa, Chem. Rev. 2013, 113, 6114–6178.
[12] W. A. Velema, W. Szymanski, B. L. Feringa, J. Am. Chem. Soc. 2014,
136, 2178–2191.
[13] C. Falenczyk, M. Schiedel, B. Karaman, T. Rumpf, N. Kuzmanovic, M.
Grøtli, W. Sippl, M. Jung, B. König, Chem. Sci. 2014, 5, 4794–4799.
[14] N. A. Simeth, L.-M. Altmann, N. Wössner, E. Bauer, M. Jung, B. König,
J. Org. Chem. 2018, 83, 7919–7927.
[15] a) W. Szymanski, M. E. Ourailidou, W. A. Velema, F. J. Dekker, B. L.
Feringa, Chemistry 2015, 21, 16517–16524; b) S. A. Reis et al., Nat.
Chem. Biol. 2016, 12, 317–323; c) C. E. Weston, A. Krämer, F. Colin, Ö.
Yildiz, M. G. J. Baud, F.-J. Meyer-Almes, M. J. Fuchter, ACS Infect. Dis.
2017, 3, 152–161.
Acknowledgements
The Jung group thanks the Deutsche Forschungsgemeinschaft
(DFG, JU295/14-1 and 235777276/GRK1976) for funding, O.
Einsle acknowledges support by grant DFG CRC 922.
[16] H. M. D. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012, 41, 1809–
1825.
Keywords: Azo dyes • Epigenetics • Photopharmacology •
[17] a) S. Crespi, N. A. Simeth, B. König, Nat. Rev. Chem. 2019, 3, 133–146;
b) D. Cameron, S. Eisler, J. Phys. Org. Chem. 2018, 31, e3858; c) M.
Dong, A. Babalhavaeji, S. Samanta, A. A. Beharry, G. A. Woolley, Acc.
Chem. Res. 2015, 48, 2662–2670; d) N. A. Simeth, A. Bellisario, S.
Crespi, M. Fagnoni, B. König, J. Org. Chem. 2019; e) J. Calbo, C. E.
Weston, A. J. P. White, H. S. Rzepa, J. Contreras-García, M. J. Fuchter,
J. Am. Chem. Soc. 2017, 139, 1261–1274.
Photoswitches • Sirtuins
References:
[1]
[2]
a) J. N. Feige, J. Auwerx, Curr. Opin. Cell Biol. 2008, 20, 303–309; b) M.
C. Haigis, L. P. Guarente, Genes Dev. 2006, 20, 2913–2921; c) E.
Verdin, M. D. Hirschey, L. W. S. Finley, M. C. Haigis, Trends Biochem.
Sci. 2010, 35, 669–675;
[18] H. Cui, Z. Kamal, T. Ai, Y. Xu, S. S. More, D. J. Wilson, L. Chen, J. Med.
Chem. 2014, 57, 8340–8357.
a) R. A. Frye, Biochem. Biophys. Res. Commun. 2000, 273, 793–798; b)
S. Greiss, A. Gartner, Mol. Cells 2009, 28, 407–415; c) M. Schiedel, D.
Robaa, T. Rumpf, W. Sippl, M. Jung, Med. Res. Rev. 2018, 38, 147–200;
[19] a) A. A. Blevins, G. J. Blanchard, J. Phys. Chem. B 2004, 108, 4962–
4968; b) W. R. Brode, J. H. Gould, G. M. Wyman, J. Am. Chem. Soc.
1952, 74, 4641–4646.
11
This article is protected by copyright. All rights reserved.