ACS Chemical Biology
Articles
permeability. A.M.D. performed analysis of microarray data.
C.J.M. and P.R. analyzed the data and wrote the manuscript.
N.K.F., D.S.B. and R.V. analyzed data and provided review and
editorial comment of the manuscript. P.R. directed the research.
cisplatin induced ototoxicity profile may predict the need for hearing
support in children with medulloblastoma. Pediatr Blood Cancer. 60,
2
(
87.
15) Chou, Y. T., Liao, P. W., Lin, M. C., Chou, J. C., Lin, Y. H., Lin,
M. H., Tang, S. H., and Chen, M. H. (2011) Medulloblastoma
presenting with pure word deafness: report of one case and review of
literature. Pediatrics and neonatology 52, 290−293.
Notes
The authors declare no competing financial interest.
(16) Harris, P. S., Venkataraman, S., Alimova, I., Birks, D. K.,
ACKNOWLEDGMENTS
Balakrishnan, I., Cristiano, B., Donson, A. M., Dubuc, A. M., Taylor,
M. D., Foreman, N. K., Reigan, P., and Vibhakar, R. (2014) Integrated
genomic analysis identifies the mitotic checkpoint kinase WEE1 as a
novel therapeutic target in medulloblastoma. Mol. Cancer 13, 72.
■
This study was supported by the National Institute Of
Neurological Disorders And Stroke (NINDS) of the National
Institutes of Health (NIH) under Award Number
R21NS084084, and by the University of Colorado Computa-
tional Chemistry and Biology Core Facility and the University
of Colorado Medicinal Chemistry Core Facility, which are
supported in part NIH/NCATS Colorado CTSA Grant
Number UL1 TR001082.
(
17) Chen, T., Stephens, P. A., Middleton, F. K., and Curtin, N. J.
2012) Targeting the S and G2 checkpoint to treat cancer. Drug
Discovery Today 17, 194−202.
18) Bucher, N., and Britten, C. D. (2008) G2 checkpoint abrogation
(
(
and checkpoint kinase-1 targeting in the treatment of cancer. Br. J.
Cancer 98, 523−528.
(19) Do, K., Doroshow, J. H., and Kummar, S. (2013) Wee1 kinase
REFERENCES
as a target for cancer therapy. Cell Cycle 12, 3348.
20) Indovina, P., and Giordano, A. (2010) Targeting the checkpoint
■
(
(
1) Packer, R. J., Cogen, P., Vezina, G., and Rorke, L. B. (1999)
Medulloblastoma: clinical and biologic aspects. Neuro Oncol 1, 232−
kinase WEE1: selective sensitization of cancer cells to DNA-damaging
drugs. Cancer Biol. Ther. 9, 523−525.
(21) Jin, P., Gu, Y., and Morgan, D. O. (1996) Role of inhibitory
CDC2 phosphorylation in radiation-induced G2 arrest in human cells.
J. Cell Biol. 134, 963−970.
(22) Igarashi, M., Nagata, A., Jinno, S., Suto, K., and Okayama, H.
(1991) Wee1(+)-like gene in human cells. Nature 353, 80−83.
(23) McGowan, C. H., and Russell, P. (1993) Human Wee1 kinase
inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15.
EMBO J. 12, 75−85.
(24) Parker, L. L., and Piwnica-Worms, H. (1992) Inactivation of the
p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase.
Science 257, 1955−1957.
250.
(
2) Pizer, B. L., and Clifford, S. C. (2009) The potential impact of
tumour biology on improved clinical practice for medulloblastoma:
progress towards biologically driven clinical trials. British journal of
neurosurgery 23, 364−375.
(
3) Packer, R. J. (2005) Progress and challenges in childhood brain
tumors. J. Neuro-Oncol. 75, 239−242.
4) O’Leary, M., Krailo, M., Anderson, J. R., and Reaman, G. H.
2008) Progress in childhood cancer: 50 years of research
(
(
collaboration, a report from the Children’s Oncology Group. Semin.
Oncol. 35, 484−493.
(
5) Ris, M. D., Packer, R., Goldwein, J., Jones-Wallace, D., and
Boyett, J. M. (2001) Intellectual outcome after reduced-dose radiation
therapy plus adjuvant chemotherapy for medulloblastoma: a Children’s
Cancer Group study. J. Clin. Oncol. 19, 3470−3476.
(25) De Witt Hamer, P. C., Mir, S. E., Noske, D., Van Noorden, C. J.,
and Wurdinger, T. (2011) WEE1 kinase targeting combined with
DNA-damaging cancer therapy catalyzes mitotic catastrophe. Clin.
Cancer Res. 17, 4200−4207.
(
6) Mulhern, R. K., Palmer, S. L., Merchant, T. E., Wallace, D.,
Kocak, M., Brouwers, P., Krull, K., Chintagumpala, M., Stargatt, R.,
Ashley, D. M., Tyc, V. L., Kun, L., Boyett, J., and Gajjar, A. (2005)
Neurocognitive consequences of risk-adapted therapy for childhood
medulloblastoma. J. Clin. Oncol. 23, 5511−5519.
(26) Hirai, H., Iwasawa, Y., Okada, M., Arai, T., Nishibata, T.,
Kobayashi, M., Kimura, T., Kaneko, N., Ohtani, J., Yamanaka, K.,
Itadani, H., Takahashi-Suzuki, I., Fukasawa, K., Oki, H., Nambu, T.,
Jiang, J., Sakai, T., Arakawa, H., Sakamoto, T., Sagara, T., Yoshizumi,
T., Mizuarai, S., and Kotani, H. (2009) Small-molecule inhibition of
Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor
cells to DNA-damaging agents. Mol. Cancer Ther. 8, 2992−3000.
(
7) Packer, R. J., Cogen, P., Vezina, G., and Rorke, L. B. (1999)
Medulloblastoma: clinical and biologic aspects. Neuro-oncol 1, 232−
50.
8) Jennings, M. T., Cmelak, A., Johnson, M. D., Moots, P. L., Pais,
2
(
(27) Hirai, H., Arai, T., Okada, M., Nishibata, T., Kobayashi, M.,
R., and Shyr, Y. (2004) Differential responsiveness among ″high risk″
pediatric brain tumors in a pilot study of dose-intensive induction
chemotherapy. Pediatr. Blood Cancer 43, 46−54.
Sakai, N., Imagaki, K., Ohtani, J., Sakai, T., Yoshizumi, T., Mizuarai, S.,
Iwasawa, Y., and Kotani, H. (2010) MK-1775, a small molecule Wee1
inhibitor, enhances anti-tumor efficacy of various DNA-damaging
agents, including 5-fluorouracil. Cancer Biol. Ther. 9, 514−522.
(
9) Koberle, B., Tomicic, M. T., Usanova, S., and Kaina, B. (2010)
Cisplatin resistance: preclinical findings and clinical implications.
(28) Indovina, P., and Giordano, A. (2010) Targeting the checkpoint
Biochim. Biophys. Acta, Rev. Cancer 1806, 172−182.
kinase WEE1: selective sensitization of cancer cells to DNA-damaging
(
10) Newton, H. B. (2001) Review of the molecular genetics and
drugs. Cancer Biol. Ther. 9, 523−525.
chemotherapeutic treatment of adult and paediatric medulloblastoma.
(29) Leijen, S., Beijnen, J. H., and Schellens, J. H. (2010) Abrogation
Expert Opin. Invest. Drugs 10, 2089−2104.
of the G2 checkpoint by inhibition of Wee-1 kinase results in
sensitization of p53-deficient tumor cells to DNA-damaging agents.
Curr. Clin. Pharmacol. 5, 186−191.
(
11) Onoyama, Y., Abe, M., Takahashi, M., Yabumoto, E., and
Sakamoto, T. (1975) Radiation therapy of brain tumors in children.
Radiology 115, 687−693.
(30) Mir, S. E., De Witt Hamer, P. C., Krawczyk, P. M., Balaj, L.,
(
12) Knight, K. R., Kraemer, D. F., and Neuwelt, E. A. (2005)
Claes, A., Niers, J. M., Van Tilborg, A. A., Zwinderman, A. H., Geerts,
D., Kaspers, G. J., Peter Vandertop, W., Cloos, J., Tannous, B. A.,
Wesseling, P., Aten, J. A., Noske, D. P., Van Noorden, C. J., and
Wurdinger, T. (2010) In silico analysis of kinase expression identifies
WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma.
Cancer Cell 18, 244−257.
(31) Bridges, K. A., Hirai, H., Buser, C. A., Brooks, C., Liu, H.,
Buchholz, T. A., Molkentine, J. M., Mason, K. A., and Meyn, R. E.
(2011) MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-
defective human tumor cells. Clin. Cancer Res. 17, 5638−5648.
Ototoxicity in children receiving platinum chemotherapy: under-
estimating a commonly occurring toxicity that may influence academic
and social development. J. Clin. Oncol. 23, 8588−8596.
(
13) Paulino, A. C., Lobo, M., Teh, B. S., Okcu, M. F., South, M.,
Butler, E. B., Su, J., and Chintagumpala, M. (2010) Ototoxicity after
intensity-modulated radiation therapy and cisplatin-based chemo-
therapy in children with medulloblastoma. Int. J. Radiat. Oncol., Biol.,
Phys. 78, 1445−1450.
(
14) Lafay-Cousin, L., Purdy, E., Huang, A., Cushing, S. L.,
Papaioannou, V., Nettel-Aguirre, A., and Bouffet, E. (2013) Early
I
ACS Chem. Biol. XXXX, XXX, XXX−XXX