10 of 11
BARAN ET AL.
ORCID
Nuray Yılmaz Baran
REFERENCES
[1] E. Sin, S.‐S. Yi, Y.‐S. Lee, J. Mol. Catal. A 2010, 315, 99.
[2] S.‐S. Yi, D.‐H. Lee, E. Sin, Y.‐S. Lee, Tetrahedron Lett. 2007, 48, 6771.
FIGURE 6 Reusability of Pd@chitosan/starch nanocomposite
[3] a) S. E. Leonhardt, A. Stolle, B. Ondruschka, G. Cravotto, C. De
Leo, K. D. Jandt, T. F. Keller, Appl. Catal. A 2010, 379, 30;
b) T. Baran, J. Colloid Interface Sci. 2017, 496, 446; c) Y. Dong,
X. Wu, X. Chen, Y. Wei, Carbohydr. Polym. 2017, 160, 106;
d) S. Rostamnia, T. Rahmani, Appl. Organometal. Chem. 2015,
29, 471; e) S. Rostamnia, X. Liu, D. Zheng, J. Colloid Interface
Sci. 2014, 432, 86.
runs. This regeneration process was repeated at end of
the each cycle and the same Pd@chitosan/starch nano-
composite was used in the reactions. Reusability tests
revealed that Pd@chitosan/starch nanocomposite could
be recycled for seven successive runs (Figure 6). This
unique property shows that Pd@chitosan/starch nano-
composite can be used in various industrial applications.
Additionally, we performed FT‐IR analysis of the cata-
lyst after the reusability tests to determine the changes
in the chemical structure of the catalyst. We did not
observe any significant change of the FT‐IR spectrum
of the catalyst compared to that of fresh catalyst. This
analysis showed that the Pd@chitosan/starch nanocom-
posite preserved its chemical structure after the succes-
sive reaction runs.
[4] F. Heidari, M. Hekmati, H. Veisi, J. Colloid Interface Sci. 2017,
501, 175.
[5] a) X. Wu, L. Tan, D. Chen, X. Meng, F. Tang, Chem. Commun.
2014, 50, 539; b) P. Mondal, N. Salam, A. Mondal, K. Ghosh, K.
Tuhina, S. M. Islam, J. Colloid Interface Sci. 2015, 459, 97;
c) S. Rostamnia, K. Lamei, F. Pourhassan, RSC Adv. 2014, 4,
59626; d) S. Rostamnia, B. Zeynizadeh, E. Doustkhah, A.
Baghban, K. O. Aghbash, Catal. Commun. 2015, 68, 77.
[6] a) A. Baghban, M. Heidarizadeh, E. Doustkhah, S. Rostamnia,
P. F. Rezaei, Int. J. Biol. Macromol. 2017, 103, 1194; b) E.
Doustkhah, S. Rostamnia, B. Gholipour, B. Zeynizadeh, A.
Baghban, R. Luque, Mol. Catal. 2017, 434, 7.
[7] a) P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu,
Nanoscale 2011, 3, 3357; b) G.‐P. Kim, M. Lee, Y. J. Lee, S. Bae,
H. D. Song, I. K. Song, J. Yi, Electrochim. Acta 2016, 193, 137; c)
Z. Zhang, Y. Jiang, M. Chi, Z. Yang, G. Nie, X. Lu, C. Wang,
Appl. Surf. Sci. 2016, 363, 578.
4 | CONCLUSIONS
In summary, a sustainable Pd@chitosan/starch nano-
composite was synthesized for the first time, and its
chemical characterization was carried out using FT‐IR,
TG/DTG, SEM/EDX, XRD and ICP‐OES analytic tools.
Spectroscopic studies showed that Pd@chitosan/starch
nanocomposite was immobilized successfully on the
CS/CT surface and the average size of Pd@chitosan/
starch nanocomposite particles was determined as 16–
21 nm. The designed novel Pd@chitosan/starch nano-
composite showed superior catalytic behaviour for the
synthesis of biphenyl compounds via Suzuki–Miyaura
cross‐coupling reactions using the microwave irradiation
technique which is an alternative source of energy for
organic synthesis. Production of biphenyls was carried
out under solvent‐free conditions and in very short reac-
tion times. Moreover, the prepared palladium nanocom-
posite showed good reusability in Suzuki–Miyaura
reactions due to its ease of recovery from reaction
media. The developed catalyst offered many advantages
such as high conversion, TONs and TOFs and tolerance
to a broad range of functional groups in Suzuki
reactions.
[8] a) A. Khazaei, M. Khazaei, S. Rahmati, J. Mol. Catal. A 2015,
398, 241; b) A. Khazaei, S. Rahmati, Z. Hekmatian, S. Saeednia,
J. Mol. Catal. A 2013, 372, 160.
[9] K. Martina, M. Manzoli, E. C. Gaudino, G. Cravotto, Catalysts
2017, 7, 98.
[10] A. Pourjavadi, A. Motamedi, Z. Marvdashti, S. H. Hosseini,
Catal. Commun. 2017, 97, 27.
[11] P. Das, W. Linert, Coord. Chem. Rev. 2016, 311, 1.
[12] a) G. N. Babu, S. Pal, Tetrahedron Lett. 2017, 58, 1000; b) S.
Rostamnia, H. Xin, Appl. Organometal. Chem. 2013, 27, 348;
c) S. Rostamnia, H. Alamgholiloo, X. Liu, J. Colloid Interface
Sci. 2016, 469, 310; d) E. Doustkhah, S. Rostamnia, H. G.
Hossieni, R. Luque, Chem. Select 2017, 2, 329; e) S. Rostamnia,
E. Doustkhah, B. Zeynizadeh, Micropor. Mesopor. Mater. 2016,
222, 87; f) S. Rostamnia, T. Rahmani, H. Xin, J. Ind. Eng. Chem.
2015, 32, 218.
[13] B. C. Makhubela, A. Jardine, G. S. Smith, Appl. Catal. A 2011,
393, 231.
[14] P. Karthikeyan, A. Vanitha, P. Radhika, K. Suresh, A.
Sugumaran, Tetrahedron Lett. 2013, 54, 7193.
[15] T. Baran, A. Menteş, Int. J. Biol. Macromol. 2015, 79, 542.