3
A three-membered cyclic bromonium ion intermediate 3 is
formed at the initial stage of the reaction due to electrophilic
addition of the Br+ ion (generated from TsNBr2) onto the
olefin.15a, 19 The intermediate 3 undergoes ring opening by water
9
Deshmukh, S. S.; Chaudhari, K. H.; Akamanchi, K. G.
Synlett 2011, 81-83.
10 Moorthy, J. N.; Senapati, K.; Singhal, N. Tetrahedron
Lett. 2009, 50, 2493-2496.
2
via the SN pathway to produce bromohydrin 4. The
11 Patil, R. D.; Joshi, G.; Adimurthy, S.; Ranu, B. C.
Tetrahedron Lett. 2009, 50, 2529-2532.
12 Moriuchi, T.; Yamaguchi, M.; Kikushima, K.; Hirao, T.
Tetrahedron Lett. 2007, 48, 2667-2670.
regioselectivity can be explained by considering the fact that the
β-position is more positive than the α-position. Nucleophilic
opening of the cyclic bromonium intermediate is most likely
from the more positive β -position. The resulting bromohydrin 4
undergoes further oxidation via intermediate 5 to produce the
final product α-bromo ketone readily.20
13 Nobuta, T.; Hirashima, S.-i.; Tada, N.; Miura, T.; Itoh, A.
Synlett 2010, 2335-2339.
14 Kageyama, T.; Tobito, Y.; Katoh, A.; Ueno, Y.; Okawara,
M. Chem. Lett. 1983, 12, 1481-1482.
15 (a) Phukan, P.; Chakraborty, P.; Kataki, D. J. Org. Chem.
2006, 71, 7533-7537; (b) Saikia, I.; Phukan, P.
Tetrahedron Lett. 2009, 50, 5083-5087; (c) Saikia, I.;
Chakraborty, P.; Phukan, P. ARKIVOC, 2009 (xiii), 281
(d) Saikia, I.; Kashyap, B.; Phukan, P. Synth. Commun.
2010, 40, 2647-2652; (e) Saikia, I.; Kashyap, B.; Phukan,
P. Chem. Commun. 2011, 47, 2967-2969; (f) Borah, A.
J.; Phukan, P. Chem. Commun. 2012, 48, 5491-5493; (g)
Saikia, I.; Rajbongshi, K. K.; Phukan, P. Tetrahedron
Lett. 2012, 53, 758-761; (h) Borah, A. J.; Phukan, P.
Tetrahedron Lett. 2012, 53, 3035-3037; (i) Rajbongshi,
K. K.; Phukan, P. Tetrahedron Lett. 2014, 55, 1877-1878;
(j) Saikia, I.; Chakraborty, P.; Sarma, M. J.; Goswami,
M.; Phukan, P. Synth. Commun. 2014, DOI:
10.1080/00397911.2014.956367.
In summary, an efficient process has been developed for
direct synthesis of α- bromo ketones from olefins. Different kinds
of olefins could be transformed into corresponding α-bromo
ketones under mild reaction conditions with excellent yield.
Acknowledgments
Financial Support from DST (Grant No. SR/S1/OC-
43/2011) is gratefully acknowledged.
References and notes
1 (a) Takami, K.; Usugi, S.-i.; Yorimitsu, H.; Oshima, K.
Synthesis 2005, 824-839; (b) Li, L.; Cai, P.; Xu, D.;
Guo, Q.; Xue, S. J. Org. Chem. 2007, 72, 8131-8134;
(c) Giordano, C.; Castaldi, G.; Casagrande, F.; Abis, L.
Tetrahedron Lett. 1982, 23, 1385-1386; (d) Dubois, J.-
E.; Axiotis, G.; Bertounesque, E. Tetrahedron Lett.
1985, 26, 4371-4372; (e) Aychiluhim, T. B.; Rao, V.
R. Synth. Commun. 2014, 44, 1422-1429; (f) Lin, M.-
H.; Kuo, C.-K.; Lin, W.-C.; Huang, Y.-C.; Tsai, Y.-T.;
Liang, K.-Y.; Li, Y.-S.; Chuang, T.-H. Tetrahedron
2013, 69, 8263-8268. (g) Kawashima, H.; Kobayashi,
Y. Org. Lett. 2014, 16, 2598−2601.
16 Shen, R.; Huang, X. J. Org. Chem. 2007, 72, 3961-3964.
17 Khazaei, A.; Rostami, A.; Tanbakouchian, Z.; Zinati, Z.
Catal. Commun. 2006, 7, 214-217.
18 Hilt, G.; Danz, M. Synthesis, 2014, 2257-2263.
19 Rodebaugh, R.; Fraser-Reid, B. Tetrahedron 1996, 52,
7663-7678.
20 (a) Venkatasubramanian, N.; Thiagarajan, V. Can. J. Chem.
1969, 47, 694-697; (b) Venkatasubramanian, N.;
Thiagarajan, V. Tetrahedron Lett. 1968, 9, 1711-1714.
21 Experimental Procedure: To a solution of olefin
(1mmol) in acetone (3 mL) and water (0.1 mL), TsNBr2
(2.2 mmol) was added at room temperature. After
completion of reaction, sodium thiosulfate (200 mg
approx.) was added and the reaction mixture was stirred
for another 10 min. The reaction mixture was extracted
with ethyl actetate, dried (Na2SO4) and concentrated.
Purification of the crude product by flash chromatography
on silica gel (230-400 mesh) with petroleum ether –
EtOAc as eluent gave the pure product.
2 (a) Erian, A. W.; Sherif, S. M.; Gaber, H. M. Molecules
2003, 8, 793–865; (b) Donohoe, T. J.; Kabeshov, M.
A.; Rathi, A. H.; Smith, I. E. D. Org. Biomol. Chem.
2012, 10, 1093-1101; (c) Reddy, K. V. V.; Rao, P. S.;
Ashok, D. Synth. Commun. 2000, 30, 1825-1836. (d)
Marek, A.; Kulhanek, J.; Ludwig, M.; Bures, F.
Molecules 2007, 12, 1183-1190; (e) Pchalek, K.;
Jones, A. W.; Wekking, M. M. T.; Black, D. S.
Tetrahedron 2005, 61, 77-82.
3
Baldwin, J. E.; Fryer, A. M.; Pritchard, G. J. J. Org.
Chem. 2001, 66, 2588-2596.
4
5
(a ) Julian, P. L.; Karpel, W. J. J. Am. Chem. Soc. 1950,
72, 362-366; (b ) Diwu, Z.; Beachdel, C.; Klaubert, D. H.
Tetrahedron Lett. 1998, 39, 4987-4990; (c) Choi, H. Y.;
Chi, D. Y. Org. Lett. 2003, 5, 411-414.
.
(a) Tanemura, K.; Suzuki, T.; Nishida, Y.;
Satsumabayashi, K.; Horaguchi, T. Chem. Commun.
2004, 470-471; (b) Arbuj, S. S.; Waghmode, S. B.;
Ramaswamy, A. V. Tetrahedron Lett. 2007, 48, 1411-
1415; (c) Pravst, I.; Zupan, M.; Stavber, S. Tetrahedron
2008, 64, 5191-5199; (d) Meshram, H. M.; Reddy, P. N.;
Vishnu, P.; Sadashiv, K.; Yadav, J. S. Tetrahedron Lett.
2006, 47, 991-995.
6
7
Shi, X.; Dai, L. J. Org. Chem. 1993, 58, 4596-4598.
Adimurthy, S.; Ghosh, S.; Patoliya, P. U.;
Ramachandraiah, G.; Agrawal, M.; Gandhi, M. R.;
Upadhyay, S. C.; Ghosh, P. K.; Ranu, B. C. Green Chem.
2008, 10, 232-237.
8
Jiang, Q.; Sheng, W.; Guo, C. Green Chem. 2013, 15,
2175-2179.