E
A. Taher et al.
Letter
Synlett
The reusability of the catalyst was also examined. A ma-
jor advantage of the catalyst is that it can be easily recov-
ered by simple filtration. The recycling of the catalyst was
examined in the coupling of 2-bromotoluene with phenyl-
boronic acid in 1:1 ethanol–water [Figure 3 (d)]. Similar
yields (100% to 98%) were obtained over the six runs, with-
out any significant loss of activity. The possible leaching of
Pd after completion of the reaction was monitored by ICP-
MS, which showed a total loss of 0.7 wt%. A comparative
TEM study of the catalyst 3 before and after the experi-
ments [Figure 1 (a and b)] showed that Pd nanoparticles
were dispersed on the rGO after several reaction runs. The
results of this study agreed with reports in the literature
that the formation of Pd nanoparticles on the rGO surface
as an active species developed during the reaction.45,46 The
extremely high stability and reusability of the prepared cat-
alyst might be due to the strong interactions between rGO
and the Pd moieties, which promote the catalytic reaction
under mild conditions.
In conclusion, we have designed and developed a highly
active heterogeneous palladium catalyst supported on re-
duced graphene oxide for coupling reactions in ethanol–
water. We showed that the catalyst could be used to couple
a wide range of less reactive aryl halides with phenylboron-
ic acid under mild conditions. Repeated reactions per-
formed by using a recycled catalyst showed similar yields
without a significant loss in activity. Advantages of the
present method include simple workups, high yields, and
good recyclability of the catalyst.
(9) (a) Taher, A.; Kim, J.-B.; Jung, J.-Y.; Ahn, W.-S.; Jin, M.-J. Synlett
2009, 2477. (b) Wittmann, S.; Schätz, A.; Grass, R. N.; Stark, W.
J.; Reiser, O. Angew. Chem. Int. Ed. 2010, 49, 1867.
(10) (a) Paul, S.; Clark, J. H. Green Chem. 2003, 5, 635. (b) Horniakova,
J.; Raja, T.; Kubota, Y.; Sugi, Y. J. Mol. Catal. A: Chem. 2004, 217,
73.
(11) Uozumi, Y. Bull. Chem. Soc. Jpn. 2008, 81, 1183.
(12) Andrés, R.; de Jesús, E.; Flores, J. C. New J. Chem. 2007, 31, 1161.
(13) Garcia-Bernabé, A.; Tzschucke, C. C.; Bannwarth, W.; Haag, R.
Adv. Synth. Catal. 2005, 347, 1389.
(14) Liu, K.; Chen, T.; Hou, Z.; Wang, Y.; Dai, L. Catal. Lett. 2014, 144,
314.
(15) (a) Bai, C.; Zhao, Q.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Catal. Lett.
2014, 144, 1617. (b) Chua, C. K.; Pumera, M. Chem. Soc. Rev.
2014, 43, 291.
(16) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.;
Booth, T. J.; Roth, S. Nature 2007, 446, 60.
(17) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc.
Rev. 2010, 39, 228.
(18) Tan, R.; Li, C.; Luo, J.; Kong, Y.; Zheng, W.; Yin, D. J. Catal. 2013,
298, 138.
(19) Morimoto, N.; Yamamoto, S-i.; Takeuchi, Y.; Nishina, Y. RSC. Adv.
2013, 3, 15608.
(20) Santra, S.; Hota, P. K.; Bhattacharyya, R.; Bera, P.; Ghosh, P.;
Mandal, S. K. ACS. Catal. 2013, 3, 2776.
(21) Shang, N.; Feng, C.; Zhang, H.; Gao, S.; Tang, R.; Wang, C.; Wang,
Z. Catal. Commun. 2013, 40, 111.
(22) Liu, M.; Lu, Y.; Chen, W. Adv. Funct. Mater. 2013, 23, 1289.
(23) Qin, Y.; Li, J.; Kong, Y.; Li, X.; Tao, Y.; Li, S.; Wang, Y. Nanoscale
2014, 6, 1281.
(24) Qi, J.; Lv, W.; Zhang, G.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X.
Nanoscale 2013, 5, 6275.
(25) Feng, C.; Zhang, H.-Y.; Shang, N.-Z.; Gao, S.-T.; Wang, C. Chin.
Chem. Lett. 2013, 24, 539.
(26) Nie, Y.; Hübert, T. Polym. Int. 2011, 60, 1574.
(27) Zhan, Y.; Wu, J.; Xia, H.; Yan, N.; Fei, G.; Yuan, G. Macromol.
Mater. Eng. 2011, 296, 590.
Acknowledgment
(28) Huang, K.-J.; Niu, D.-J.; Liu, X.; Wu, Z.-W.; Fan, Y.; Chang, Y.-F.;
Wu, Y.-Y. Electrochim. Acta 2011, 56, 2947.
This work was supported by an Inha University Research Grant (Inha
2014).
(29) Pham, V. H.; Cuong, T. V.; Hur, S. H.; Oh, E.; Kim, E. J.; Shin, E.
W.; Chung, J. S. J. Mater. Chem. 2011, 21, 3371.
(30) Zhang, X.; Wan, S.; Pu, J.; Wang, L.; Liu, X. J. Mater. Chem. 2011,
21, 12251.
(31) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.;
Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S.
Carbon 2007, 45, 1558.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
(32) Wang, H.; Robinson, J. T.; Li, X.; Dai, H. J. Am. Chem. Soc. 2009,
131, 9910.
References and Notes
(33) Tiberj, A.; Rubio-Roy, M.; Paillet, M.; Huntzinger, J.-R.; Landois,
P.; Mikolasek, M.; Contreras, S.; Sauvajol, J.-L.; Dujardin, E.;
Zahab, A.-A. Sci. Rep. 2013, 3, 2355.
(34) Parambhath, V. B.; Nagar, R.; Sethupathi, K.; Ramaprabhu, S.
J. Phys. Chem. C 2011, 115–15679.
(35) Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S. J. Mater. Chem. 2009,
19, 7098.
(36) Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N. J. Mater. Chem.
2011, 21, 16197.
(37) Xue, Y.; Liu, Y.; Lu, F.; Qu, J.; Chen, H.; Dai, L. J. Phys. Chem. Lett.
2012, 3, 1607.
(38) Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.;
Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventris, C. A. Jr.;
Ruoff, R. S. Carbon 2009, 47, 145.
(1) Wang, S.; Li, J.; Miao, T.; Wu, W.; Li, Q.; Zhuang, Y.; Zhou, Z.; Qiu,
L. Org. Lett. 2012, 14, 1966.
(2) Shukla, S. P.; Tiwari, R. K.; Verma, A. K. J. Org. Chem. 2012, 77,
10382.
(3) Keske, E. C.; Zenkina, O. V.; Wang, R.; Crudden, C. M. Organome-
tallics 2012, 31, 6215.
(4) Banwell, M. G.; Goodwin, T. E.; Ng, S.; Smith, J. A.; Wong, J. D.
Eur. J. Org. Chem. 2006, 3043.
(5) Kotha, S.; Lahiri, K. Eur. J. Org. Chem. 2007, 1221.
(6) Lee, D.-H.; Jin, M.-J. Org. Lett. 2011, 13, 252.
(7) Cole-Hamilton, D. J. Science 2003, 299, 1702.
(8) Herrmann, W. A.; Kohlpaintner, C. W. Angew. Chem. 1993, 105,
1588.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–F