X. Wang et al. / Polymer 53 (2012) 1864e1869
[7] Virgili T, Lidzey DG, Bradley DDC. Adv Mater 2000;12:58e62.
1869
annealing, the OFET with PPoreBT as the active layer showed
a mobility of 1.3 ꢁ 10ꢀ6 cm2/V$s in the saturation regime, together
with an on/off ratio of 140 when measured under ambient condi-
tions. Annealing the devices at 140 ꢂC for 30 min led to improved
charge carrier mobility of up to 4.3 ꢁ 10ꢀ5 cm2 Vꢀ1 sꢀ1 with an on/
off current ratio of 104 and a threshold voltage (VTH) of 2 V. The
charge carrier mobility is two orders of magnitude higher than that
of non-DeA porphyrinediacetylene copolymer [10]. These results
demonstrate that carrier mobility of prophyrin-based conjugated
polymers could be efficiently increased by intramolecular charge
transfer. High carrier mobilities could be obtained from prophyrin-
based DeA copolymer systems through the manipulation of
intramolecular charge transfer.
[8] (a) Li BS, Li J, Fu YQ, Bo ZS. J Am Chem Soc 2004;126:3430e1;
(b) Li CH, Bo ZS. Polymer 2010;51:4273e94.
[9] Wang XC, Wang HQ, Yang Y, He YJ, Zhang L, Li YF, et al. Macromolecules 2010;
43:709e15.
[10] Pichler K, Anderson HL, Bradley DDC, Friend RH, Hamer PJ, Harrison MG, et al.
Mol Cryst Liq Cryst 1994;256:415e22.
[11] Hoang MH, Kim Y, Kim SJ, Choi DH, Lee SJ. Chem Eur J 2011;17:7772e6.
[12] Noh YY, Kim JJ, Yoshida Y, Yase K. Adv Mater 2003;15:699e702.
[13] Shea PB, Kanicki J, Pattison LR, Petroff P, Kawano M, Yamada H, et al. J Appl
Phys 2006;100:034502e8.
[14] Huang XB, Zhu CL, Zhang SN, Li WW, Guo YL, Zhan XW, et al. Macromolecules
2008;41:6895e902.
[15] Wang CL, Zhang WB, Van Horn RM, Tu YF, Gong X, Cheng SZD, et al. Adv Mater
2011;23:2951e6.
[16] Zhan HM, Lamare S, Ng A, Kenny T, Guernon H, Chan WK, et al. Macromol-
ecules 2011;44:5155e67.
[17] Bessho T, Zakeeruddin SM, Yeh CY, Diau EWG, Gratzel M. Angew Chem Int Ed
2010;49:6646e9.
[18] Fukuzumi S, Kojima T. J Mater Chem 2008;18:1427e39.
[19] Perez MD, Borek C, Djurovich PI, Mayo EI, Lunt RR, Forrest SR, et al. Adv Mater
2009;21:1517e20.
[20] Liu YJ, Guo X, Xiang N, Zhao B, Huang H, Li H, et al. J Mater Chem 2010;20:
1140e6.
[21] (a) Zang L, Che Y, Moore JS. Acc Chem Res 2008;41:1596e608;
(b) Laschat S, Baro A, Steinke N, Giesselmann F, Hgele C, Scalia G, et al. Angew
Chem Int Ed 2007;46:4832e87.
[22] (a) Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, et al. Nat Mater
2005;4:864e8;
5. Conclusion
We designed and synthesized a novel porphyrin-based polymer-
DPP (PPoreBT). The polymer demonstrated good solubility in
common organic solvents and broad absorption spectrum with
extremely enhanced Q-band absorption. The HOMO and LUMO
energy levels of the polymer are ꢀ5.06 eV and ꢀ3.63 eV, respectively.
The solution-processed organic field-effect transistors were fabri-
cated with bottom gate/top-contact geometry. The hole mobility of
PPoreBT reached 4.3 ꢁ10ꢀ5 cm2 Vꢀ1 sꢀ1 with an on/off current ratio
of 104. This mobility is one of the highest values for porphyrin-based
polymers. These results demonstrate that electronic and optoelec-
tronic properties of porphyrin-based conjugated copolymers could
be efficiently tuned by intramolecular charge transfer. High FET
carrier mobilities could be obtained from prophyrin-based DeA
copolymer systems through the manipulation of intramolecular
charge transfer. Most importantly, this work opens up a new path to
design high-performance porphyrin-based materials.
(b) Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, et al. Nat
Mater 2006;5:197e203;
(c) Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, et al. Nat Mater
2007;6:497e500.
[23] Sivula K, Ball ZT, Watanabe N, Frechet JMJ. Adv Mater 2006;18:206e10.
[24] (a) Ego C, Marsitzky D, Becker S, Zhang J, Grimsdale AC, Mullen K, et al. J Am
Chem Soc 2003;125:437e43;
(b) Liu J, Guo X, Bu LJ, Xie ZY, Cheng YX, Geng YH, et al. Adv Funct Mater 2007;
17:1917e25.
[25] Scharber MC, Muhlbacher D, Koppe M, Denk P, Walfauf C, Heeger AJ, et al. Adv
Mater 2006;18:789e94.
[26] Peng Q, Peng JB, Kang ET, Neoh KG, Cao Y. Macromolecules 2005;38:7292e8.
[27] Chua LL, Zaumseil J, Chang JF, Ou ECW, Ho PKH, Sirringhaus H, et al. Nature
(London) 2005;434:194e9.
Acknowledgments
[28] (a) Babel A, Jenekhe SA. J Am Chem Soc 2003;125:13656e7;
(b) Babel A, Zhu Y, Cheng KF, Chen WC, Jenekhe SA. Adv Funct Mater 2007;17:
2542e9.
[29] Zhu Y, Champion RD, Jenekhe SA. Macromolecules 2006;39:8712e9.
[30] Thompson BC, Kim YG, McCarley TD, Reynolds JR. J Am Chem Soc 2006;128:
12714e25.
[31] Sonmez G, Shen CKF, Rubin Y, Wudl F. Angew Chem Int Ed 2004;43:
1498e502.
[32] (a) Tsao HN, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, et al.
Adv Mater 2009;21:209e12;
This work was supported by Beijing Natural Science Foundation
(No. 2122047). We thank Professor Yongfang Li for his help with the
CV measurements.
References
(b) Zhang WM, Smith J, Watkins SE, Gysel R, McGehee M, Salleo A, et al. J Am
Chem Soc 2010;132:11437e9.
[1] Nardi M, Verucchi R, Corradi C, Pola M, Casarin M, Vittadini A, et al. Phys Chem
Chem Phys 2010;12:871e80.
[33] (a) Wang XC, Sun YP, Chen S, Guo X, Zhang MJ, Li XY, et al. Macromolecules
2012;45:1208e16;
[2] Burrows PE, Forrest SR, Sibley SP, Thompson ME. Appl Phys Lett 1996;69:
2959e61.
(b) Wang XC, Chen S, Sun YP, Zhang MJ, Li YF, Li XY, et al. Polym Chem 2011;2:
2872e7.
[3] Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, et al.
Nature 1998;395:151e4.
[34] Lindsey JS, Prathapan S, Johnson TE, Wagner RW. Tetrahedron 1994;50:
8941e68.
[4] Iqbal R, Yahioglu G, Milgrom L, Moratti SC, Holmes AB, Cacialli F, et al.
Synthetic Met 1999;102:1024e5.
[35] Li YF, Cao Y, Gao J, Wang DL, Yu G, Heeger AJ. Synthetic Met 1999;99:243e8.
[36] (a) Sun QJ, Wang HQ, Yang CH, Li YF. J Mater Chem 2003;13:800e6;
(b) Wang XC, Luo H, Sun YP, Zhang MJ, Li XY, Yu G, et al. J Polym Sci Part A:
Polym Chem 2012;50:371e7.
[5] Morgado J, Cacialli F, Iqbal R, Moratti SC, Holmes AB, Yahioglu G, et al. J Mater
Chem 2001;11:278e83.
[6] Morgado J, Cacialli F, Friend RH, Iqbal R, Yahioglu G, Milgrom LR, et al. Chem
Phys Lett 2000;325:552e8.