2452
S. Kodama et al. / Tetrahedron Letters 51 (2010) 2450–2452
Ohshiro, Y.; Ikeda, I. Chem. Lett. 1993, 1889; (i) Neumann, R.; Levin, M. J. Org.
Acknowledgments
Chem. 1991, 56, 5707.
5. Nakai, M.; Obata, M.; Sekiguchi, F.; Kato, M.; Shiro, M.; Ichimura, A.; Kinoshita,
I.; Mikuriya, M.; Inohara, T.; Kawabe, K.; Sakurai, H.; Orvig, C.; Yano, S. J. Inorg.
Biochem. 2004, 98, 105.
6. We have reported that VO(Hhpic)2 has a catalytic activity for the oxidation of
benzyl alcohols with molecular oxygen: Kodama, S.; Ueta, Y.; Yoshida, J.;
Nomoto, A.; Yano, S.; Ueshima, M.; Ogawa, A. Dalton Trans. 2009, 9708.
7. General procedure for the oxidation of benzylamines using an autoclave or sealed
tube (Table 1): The vanadium complex (0.03 mmol, 10.3 mg), amine
This research was supported by JST Research Seeds Quest Pro-
gram (Lower Carbon Society), from the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan, and Kansai Research
Foundation for Technology Promotion (KRF). S.K. acknowledges Re-
search Fellowships of the Japan Society for the Promotion of Sci-
ence (JSPS) for Young Scientists.
(1.5 mmol), and acetonitrile (6 mL) were placed in
a 50 mL autoclave in
sequence, and then oxygen was introduced (0.1 MPa). This autoclave was then
put into an oil bath (120 °C) under magnetic stirring for the desired reaction
time. The resulting mixture was filtered through a Celite pad. After evaporation
of the solvent, the product was purified by column chromatography on silica
gel using ethyl acetate and hexane as eluent to afford the analytically pure
imines.
Supplementary data
Experimental procedures, compound characterization, and se-
lected 1H and 13C NMR spectral data are available. Supplementary
data associated with this article can be found, in the online version,
8. Similar conditions could not employed with simple aliphatic amines such as
aminomethylcyclohexane and di-n-hexylamine, and further detailed
optimization of the conditions is required for the oxidation of them.
9. (a) For reviews concerning catalytic reactions using ionic liquids, see:
Wasserscheid, P.; Schulz, P. In Ionic Liquids in Synthesis; 2nd ed.;
Wasserscheid, P., Welton, T., Eds., Wiley-VCH: Weinheim, 2008; pp 369–463.
Chapter 5.3; (b) Muzart, J. Adv. Synth. Catal. 2006, 348, 275; (c) Fei, Z.; Geldbach,
T. J.; Zhao, D.; Dyson, P. J. Chem. Eur. J. 2006, 12, 2122; (d) Miao, W.; Chan, T. H.
Acc. Chem. Res. 2006, 39, 897; (e) Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S.
M. S. Tetrahedron 2005, 61, 1015; (f) Baudequin, C.; Brégeon, D.; Levillain, J.;
Guillen, F.; Plaquevent, J.-C.; Gaumont, A.-C. Tetrahedron: Asymmetry 2005, 16,
3921; (g) Welton, T. Coord. Chem. Rev. 2004, 248, 2459; (h) Sheldon, R. Chem.
Commun. 2001, 2399; (i) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev.
2002, 102, 3667.
10. Catalytic oxidation of alcohols in ILs: (a) Chhikara, B. S.; Chandra, R.; Tandon, V.
J. Catal. 2005, 230, 436; (b) Ansari, I. A.; Gree, R. Org. Lett. 2002, 4, 1507; (c)
Wolfson, A.; Wuyts, S.; De Vos, D. E.; Vankelecom, I. F. J.; Jacobs, P. A.
Tetrahedron Lett. 2002, 43, 8107.
11. Ragauskas and co-workers reported selective aerobic oxidation of alcohols
using vanadium catalysts in IL: Jiang, N.; Ragauskas, A. J. Tetrahedron Lett. 2007,
48, 273.
12. General procedure for the oxidation of benzylamines in [hmim]PF6 (Table 3): In a
30 mL two-necked round-bottomed flask with a stirring bar under atmosphere
of oxygen, VO(Hhpic)2 (0.03 mmol, 10.3 mg), amine (1.5 mmol), and
[hmim]PF6 (2 mL) were placed, and then the mixture was heated at 120 °C
for the appropriate time with magnetic stirring. The resulting mixture was
extracted with diethyl ether. The extracts were concentrated in vacuo. The
product was confirmed by 1H NMR spectroscopy. Purification of the product by
column chromatography on silica gel using ethyl acetate and hexane as eluent
afforded the analytically pure imines.
13. Although other ionic liquids, such as [hmim]Cl, [bmim]Tf2N, and [edmim]Tf2N
(Tf2N: bis(trifluoromehanesulfonyl)imide), were employed for this reaction,
the separation of the product from these ionic liquids was relatively difficult,
compared with the oxidation in [hmim]PF6.
References and notes
1. (a) Murahashi, S.-I.; Komiya, N. In Modern Oxidation Methods; Bäckvall, J.-E., Ed.;
Wiley-VCH: Weinheim, 2004; Chapter6, pp. 165–191; (b) Hudlicky´, M.
Oxidation in Organic Chemistry; ACS Monograph 186; American Chemical
Society: Washington, DC, 1990; (c) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed
Oxidation of Organic Compounds; Academic Press: New York, 1981; (d) Mizuno,
N.; Kamata, K.; Uchida, S.; Yamaguchi, K. In Modern Heterogeneous Oxidation
Catalysis; Mizuno, N., Ed.; Wiley-VCH: Weinheim, 2009, Chapter 6, pp 185–
216; (e) Punta, C.; Moscatelli, D.; Porta, O.; Minisci, F.; Gambarotti, C.; Lucarini,
M. In Mechanism in Homogeneous and Heterogeneous Epoxidation Catalysis;
Oyama, S. T., Ed.; Elsevier: Amsterdam, 2008; Chapter 6, pp 217–229; (f) Conte,
V.; Floris, B.; Silvagni, A. In Vanadium: The Versatile Metal; Kustin, K., Pessoa, J.
C., Crans, D. C., Eds.; ACS Symposium Series 974; American Chemical Society:
Washington, DC, 2007, Chapter 2, pp 28–37.
2. (a) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247; (b) Vilaivan, T.; Winotapan,
C.; Banphavichit, V.; Shinada, T.; Ohfune, Y. J. Org. Chem. 2005, 70, 3464; (c)
Bloch, R. Chem. Rev. 1998, 98, 1407; (d) Bishop, M. J.; McNutt, R. W. Bioorg. Med.
Chem. Lett. 1995, 5, 1311; (e) Martiny, L.; Jørgensen, K. A. J. Chem. Soc., Perkin
Trans. 1 1995, 699.
3. (a) Li, F.; Chen, J.; Zhang, Q.; Wang, Y. Green Chem. 2008, 10, 553; (b) Kim, J. W.;
Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2008, 47, 9249; (c) Yamaguchi,
K.; Mizuno, N. Angew. Chem., Int. Ed. 2003, 42, 1480; (d) Maeda, Y.; Nishimura,
T.; Uemura, S. Bull. Chem. Soc. Jpn. 2003, 76, 2399; (e) Mori, K.; Yamaguchi, K.;
Mizugaki, T.; Ebitani, K.; Kaneda, K. Chem. Commun. 2001, 461; (f) Bailey, A. J.;
James, B. R. Chem. Commun. 1996, 2343.
4. (a) Grirrane, A.; Corma, A.; Garcia, H. J. Catal. 2009, 264, 138; (b) Aschwanden,
L.; Mallat, T.; Krumeich, F.; Baiker, A. J. Mol. Catal. A: Chem. 2009, 309, 57; (c)
Zhu, B.; Lazar, M.; Trewyn, B. G.; Angelici, R. J. J. Catal. 2008, 260, 1; (d) Landge,
S. M.; Atanassova, V.; Thimmaiah, M.; Török, B. Tetrahedron Lett. 2007, 48,
5161; (e) Hirao, T.; Fukuhara, S. J. Org. Chem. 1998, 63, 7534; (f) Higuchi, M.;
Ikeda, I.; Hirao, T. J. Org. Chem. 1997, 62, 1072; (g) Nakayama, K.; Hamamoto,
M.; Nishiyama, Y.; Ishii, Y. Chem. Lett. 1993, 1699; (h) Hirao, T.; Higuchi, M.;
14. The yields of the product are increased by lengthening the alkyl group of ionic
liquids (Table 3). The lipophilicity of the ionic liquids rises as the alkyl chain of
ionic liquids extends, and therefore, the solubility of the substrate in the ionic
liquid increases. As a result, the oxidation system becomes homogeneous.