Chemistry - A European Journal
10.1002/chem.201803684
FULL PAPER
Conclusions
‡
Results are taken in parts from: D. Lungerich, Doctoral Thesis,
Friedrich–Alexander–Universität Erlangen–Nürnberg, 2017.
[
[
[
1]
K.-T. Tang, J. P. Toennies, Angew. Chem. Int. Ed. 2010, 122, 9574–
In summary, we presented our comprehensive study on
superbenzene-porphyrin conjugates. The majority of conjugates
could be synthesized by a microwave-assisted condensation
protocol utilizing tert-butylated hexaphenylbenzene aldehyde
9
579; Angew. Chem. 2010, 122, 9768–9774.
J. P. Wagner, P. R. Schreiner, Angew. Chem. Int. Ed. 2015, 54, 12274–
2296; Angew. Chem. 2015, 127, 12446–12471.
2]
3]
1
P. R. Schreiner, L. V. Chernish, P. A. Gunchenko, E. Y. Tikhonchuk, H.
Hausmann, M. Serafin, S. Schlecht, J. E. P. Dahl, R. M. K. Carlson, A.
A. Fokin, Nature 2011, 477, 308–311.
(
HPB-CHO), followed by Scholl oxidation. By performing MALDI
mass spectrometric experiments, we showed that
superbenzene-porphyrin conjugates undergo supramolecular
cluster formations. These clusters can be detected in the gas
phase, with their size depending on the number of tBuHBCs in
the periphery of the porphyrin. The clusters can grow at least to
twenty molecules, which are held together by attractive London
dispersion interactions (–, – and –) that spread into all
three dimensions. By ESI–CID experiments with dimers of TPP,
tBuHBC and the composite of TPP/tBuHBC, the origin of the
attractive interactions could be identified to stem from the
tBuHBCs. XRDA of free-base and metalated conjugates came to
the same conclusion in the solid state, if no “insulators” like n-
heptane were present. Importantly, the cluster formation ability
shows no correlation to the solubility of the conjugates, which is
in agreement with the attenuation of London dispersion in
[4]
S. Grimme, R. Huenerbein, S. Ehrlich, ChemPhysChem 2011, 12,
1
258–1261.
S. Grimme, P. R. Schreiner, Angew. Chem. Int. Ed. 2011, 50, 12639–
2642; Angew. Chem. 2011, 123, 12849–12853.
J. P. Wagner, P. R. Schreiner, J. Chem. Theory Comput. 2014, 10,
353–1358.
[5]
[6]
[7]
1
1
J. P. Wagner, P. R. Schreiner, J. Chem. Theory Comput. 2016, 12,
231–237.
[8]
J. Hwang, P. Li, M. D. Smith, K. D. Shimizu, Angew. Chem. Int. Ed.
2016, 55, 8086–8089; Angew. Chem. 2016, 128, 8218–8221.
S. Rösel, H. Quanz, C. Logemann, J. Becker, E. Mossou, L.
Canadillas-Delgado, E. Caldeweyher, S. Grimme, P. R. Schreiner, J.
Am. Chem. Soc. 2017, 139, 7428–7431.
[
9]
[
[
10] S. Rösel, C. Balestrieri, P. R. Schreiner, Chem. Sci. 2017, 8, 405–410.
11] R. Pollice, M. Bot, I. J. Kobylianskii, I. Shenderovich, P. Chen, J. Am.
Chem. Soc. 2017, 139, 13126–13140.
CH
2
Cl
2
solutions. By variation of the amount of used matrix, we
[12] F. London, Z. Phys. 1930, 63, 245–279.
come to the conclusion that the clusters observed in MALDI are
likely pre-formed during the sample preparation process, which
are then transported into the gas phase upon ionization. By
absorption and emission spectroscopy, we revealed an efficient
energy transfer from the HBC-periphery to the porphyrin. At that
stage, we believe that during the excitation/ionization process
the cluster formation is enhanced due to the occupation of
higher lying orbitals of the conjugates, subsequently leading to
increased polarizabilities and thus enhanced dispersion
interactions. However, this hypothesis is currently under
investigation. In regards to above discussions, self-assembled
molecular tectonics based on functional molecules, like in our
case porphyrins and HBCs, are imaginable to serve for
numerous applications, spread from e.g., catalysis to electronics.
Importantly, the architectures are not based on covalent bonds;
thus, the nature of the van der Waals interactions allows for
dynamic transformations and adaptions to their environment.
With our findings, we believe that we enlarge the view on design
strategies of self-assembled materials that incorporate DEDs as
directing units, but still remain easily processable in solution.
[13] F. London, Trans. Faraday Soc. 1937, 33, 8–26.
[14] B. Kohl, M. V. Bohnwagner, F. Rominger, H. Wadepohl, A. Dreuw, M.
Mastalerz, Chem. Eur. J. 2015, 22, 646–655.
[
[
[
15] K. Shibasaki, A. Fujii, N. Mikami, S. Tsuzuki, J. Phys. Chem. A 2006,
110, 4397–4404.
16] M. Busker, T. Häber, M. Nispel, K. Kleinermanns, Angew. Chem. Int.
Ed. 2008, 47, 10094–10097; Angew. Chem. 2008, 120, 10248–10251.
17] A. Fujii, H. Hayashi, J. W. Park, T. Kazama, N. Mikami, S. Tsuzuki,
Phys. Chem. Chem. Phys. 2011, 13, 14131–14141.
[18] C. Tyborski, R. Meinke, R. Gillen, T. Bischoff, A. Knecht, R. Richter, A.
Merli, A. A. Fokin, T. V. Koso, V. N. Rodionov, et al., J. Chem. Phys.
2017, 147, 044303.
[
19] I. K. Mati, S. L. Cockroft, Chem. Soc. Rev. 2010, 39, 4195–4205.
20] W. R. Carroll, P. Pellechia, K. D. Shimizu, Org. Lett. 2008, 10, 3547–
[
3550.
[21] W. R. Carroll, C. Zhao, M. D. Smith, P. J. Pellechia, K. D. Shimizu, Org.
Lett. 2011, 13, 4320–4323.
[22] A. Nijamudheen, D. Jose, A. Shine, A. Datta, J. Phys. Chem. Lett. 2012,
3, 1493–1496.
[23] L. Yang, C. Adam, G. S. Nichol, S. L. Cockroft, Nat. Chem. 2013, 5,
1
006–1010.
24] C. Adam, L. Yang, S. L. Cockroft, Angew. Chem. Int. Ed. 2015, 54,
164–1167; Angew. Chem. 2015, 127, 1180–1183.
[
[
1
25] B. Bhayana, C. S. Wilcox, Angew. Chem. Int. Ed. 2007, 46, 6833–6836;
Angew. Chem. 2007, 119, 6957–6960.
Acknowledgements
[26] L. Yang, J. B. Brazier, T. A. Hubbard, D. M. Rogers, S. L. Cockroft,
Angew. Chem. Int. Ed. 2016, 55, 912–916; Angew. Chem. 2016, 128,
9
24–928.
27] D. J. Pascoe, K. B. Ling, S. L. Cockroft, J. Am. Chem. Soc. 2017, 139,
5160–15167.
28] S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Chem. Rev.
016, 116, 5105–5154.
We are grateful for the financial support from the German
[
[
Research Council (DFG SFB 953
– “Synthetic Carbon
1
Allotropes”, Project A2 and Z1). DL and JFH thank the Graduate
School of Molecular Science (GSMS) for financial support. DL
thanks the Alexander von Humboldt foundation and the Japan
Society for the Promotion of Science (JSPS) for a fellowship.
2
[29] L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670–
6688.
[30] C. R. Martinez, B. L. Iverson, Chem. Sci. 2012, 3, 2191–2201.
[31] S. Grimme, J.-P. Djukic, Inorg. Chem. 2011, 50, 2619–2628.
[32] S. O. Nilsson Lill, P. Ryberg, T. Rein, E. Bennström, P. O. Norrby,
Chem. Eur. J. 2012, 18, 1640–1649.
Keywords: Porphyrin • Hexabenzocoronene • Cluster • Mass
spectrometry • Dispersion Interaction
This article is protected by copyright. All rights reserved.