JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
CONCLUSIONS
11 C. K. Lyon, A. Prasher, A. M. Hanlon, B. T. Tuten, C. A.
Tooley, P. G. Frank, E. B. Berda, Polym. Chem. 2015, 6, 181–
Random copolymers containing terminal alkyne moieties
have been prepared by RAFT polymerization. We have
shown that both inter and intrachain cross-linked polymer
nanoparticles can be synthesized via palladium catalyzed
Sonogashira coupling. At a high polymer concentration in the
reaction mixture, interchain cross-linking predominated,
while by decreasing the concentration intrachain cross-
linking was favored. We also demonstrated that by changing
the molar percent of alkyne functionality in the parent poly-
mer, the size of resulting nanoparticle could be controlled.
Although current SCNP literature has many examples of
nanoparticle synthesis, it still lacks a thorough study on how
the nanoparticle formation is affected by the manner in
which intrachain cross-linking is performed. In this perspec-
tive, we have presented the synthesis of polymer nanopar-
ticles from single polymer chains by the Sonogashira
coupling reaction conditions and further, we envision to
study the effect of polymer architecture on the single-chain
folding behavior. The Sonogashira coupling reaction can be
applied in inducing intrachain covalent bond formation
either with in-built reactive precursors, or via an external
cross-linker. Currently, research efforts are going on in our
lab to synthesize single-chain nanoparticles under Sonoga-
shira coupling reaction conditions from in-built reactive pre-
cursor functionalized polymers. We are testing similar
synthetic conditions with the same reactive partners placed
in a variety of positions.
1
97.
1
2 A. Sanchez-Sanchez, S. Akbari, A. Etxeberria, A. Arbe, U.
Gasser, A. J. Moreno, J. Colmenero, J. A. Pomposo, ACS
Macro Lett. 2013, 2, 491–495.
13 M. Seo, B. J. Beck, J. M. J. Paulusse, C. J. Hawker, S. Y.
Kim, Macromolecules (Washington, DC) 2008, 41, 6413–6418.
14 E. Harth, B. V. Horn, V. Y. Lee, D. S. Germack, C. P.
Gonzales, R. D. Miller, C. J. Hawker, J. Am. Chem. Soc. 2002,
1
24, 8653–8660.
1
5 T. A. Croce, S. K. Hamilton, M. L. Chen, H. Muchalski, E.
Harth, Macromolecules 2007, 40, 6028–6031.
6 L. Oria, R. Aguado, J. A. Pomposo, J. Colmenero, Adv.
Mater. (Weinheim, Ger.) 2010, 22, 3038–3041.
7 A. Ruiz de Luzuriaga, N. Ormategui, H. J. Grande, I.
1
1
Odriozola, J. A. Pomposo, I. Loinaz, Macromol. Rapid Com-
mun. 2008, 29, 1156–1160.
1
8 A. Sanchez-Sanchez, I. Perez-Baena, J. A. Pomposo, Mole-
cules 2013, 18, 3339–3355.
9 D. Chao, X. Jia, B. Tuten, C. Wang, E. B. Berda, Chem. Com-
mun. (Cambridge, UK) 2013, 49, 4178–4180.
0 O. Altintas, J. Willenbacher, K. N. R. Wuest, K. K.
1
2
Oehlenschlaeger, P. Krolla-Sidenstein, H. Gliemann, C. Barner-
Kowollik, Macromolecules (Washington, DC) 2013, 46, 8092–8101.
21 P. G. Frank, B. T. Tuten, A. Prasher, D. Chao, E. B. Berda,
Macromol. Rapid Commun. 2014, 35, 249–253.
22 J. He, L. Tremblay, S. Lacelle, Y. Zhao, Soft Matter 2011, 7,
2
380–2386.
2
3 B. Zhu, G. Qian, Y. Xiao, S. Deng, M. Wang, A. Hu, J.
Polym. Sci. Part A: Polym. Chem. 2011, 49, 5330–5338.
2
2
4 P. Wang, H. Pu, M. Jin, J. Polym. Sci. Part A: Polym. Chem.
011, 49, 5133–5141.
ACKNOWLEDGMENTS
25 P. T. Dirlam, H. J. Kim, K. J. Arrington, W. J. Chung, R.
Sahoo, L. J. Hill, P. J. Costanzo, P. Theato, K. Char, J. Pyun,
Polym. Chem. 2013, 4, 3765–3773.
The authors thank the Army Research office for financial sup-
port through award number W911NF-14-1-0177 and NSF for
support through award NSF EEC 0832785. We also acknowl-
edge the University of New Hampshire for financial support.
2
6 I. Perez-Baena, F. Barroso-Bujans, U. Gasser, A. Arbe, A. J.
Moreno, J. Colmenero, J. A. Pomposo, ACS Macro Lett. 2013,
2, 775–779.
2
7 A. E. Cherian, F. C. Sun, S. S. Sheiko, G. W. Coates, J. Am.
Chem. Soc. 2007, 129, 11350–11351.
8 J. F. Lutz, M. Ouchi, D. R. Liu, M. Sawamoto, Science 2013, 341,
29 K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett.
975, 16, 4467–4470.
30 T. Kaneko, Y. Togashi, M. Teraguchi, T. Aoki, Chem. Lett.
014, 43, 1219–1221.
REFERENCES AND NOTES
2
1
2
S. K. Hamilton, E. Harth, ACS Nano 2009, 3, 402–410.
1
S. Jiwpanich, J. H. Ryu, S. Bickerton, S. Thayumanavan, J.
Am. Chem. Soc. 2010, 132, 10683–10685.
2
3
H. Takahashi, S. Sawada, K. Akiyoshi, ACS Nano 2010, 5,
3
37–345.
31 H. Sogawa, Y. Miyagi, M. Shiotsuki, F. Sanda, Macromole-
cules 2013, 46, 8896–8904.
4
4
G. Wulff, B. O. Chong, U. Kolb, Angew. Chem. Int. Ed. 2006,
5, 2955–2958.
32 S. Shanmugaraju, H. Jadhav, R. Karthik, P. S. Mukherjee,
RSC Adv. 2013, 3, 4940.
5
M. A. J. Gillissen, I. K. Voets, E. W. Meijer, A. R. A. Palmans,
Polym. Chem. 2012, 3, 3166–3174.
33 R. Grisorio, G. P. Suranna, P. Mastrorilli, G. Allegretta, A.
Loiudice, A. Rizzo, G. Gigli, K. Manoli, M. Magliulo, L. Torsi, J.
Polym. Sci. Part A: Polym. Chem. 2013, 51, 4860–4872.
6
C. T. Adkins, H. Muchalski, E. Harth, Macromolecules 2009,
42, 5786–5792.
3
4 R. Chinchilla, C. N aꢀ jera, Chem. Rev. 2007, 107, 874–922.
7
2
R. K. O’Reilly, C. J. Hawker, K. L. Wooley, Chem. Soc. Rev.
006, 35, 1068–1083.
35 H. Plenio, Angew. Chem. Int. Ed. 2008, 47, 6954–6956.
8
2
B. S. Murray, D. A. Fulton Macromolecules (Washington, DC)
011, 44, 7242–7252.
36 T. Hoshi, I. Saitoh, T. Nakazawa, T. Suzuki, J. Sakai, H.
Hagiwara, J. Org. Chem. 2009, 74, 4013–4016.
9
M. Aiertza, I. Odriozola, G. Caba n~ ero, H. J. Grande, I. Loinaz,
Cell. Mol. Life Sci. 2012, 69, 337–346.
37 F. Yhaya, S. Binauld, Y. Kim, M. H. Stenzel, Macromol.
Rapid Commun. 2012, 33, 1868–1874.
1
2
0 O. Altintas, C. Barner-Kowollik, Macromol. Rapid Commun.
012, 33, 958–971.
38 X. Zhao, H. Jiang, K. S. Schanze, Macromolecules 2008, 41,
3422–3428.
216
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2016, 54, 209–217