2045
X. Chen, S. Wang
Letter
Synlett
tant 7 to form intermediate cis-7; intramolecular ketaliza-
tion of cis-7 then leads to product 7a.
(11) For selected reviews, see: (a) Brasholz, M.; Sörgel, S.; Azap, C.;
Reissig, H.-U. Eur. J. Org. Chem. 2007, 3801. (b) Sperry, J.;
Wilson, Z. E.; Rathwell, D. C. K.; Brimble, M. A. Nat. Prod. Rep.
2010, 27, 1117. (c) Mcleod, M. C.; Rathwell, D. C. K.; Wilson, Z.
E.; Yuen, T.-Y.; Brimble, M. A. Pure Appl. Chem. 2012, 84, 1379.
(d) Green, J. C.; Burnett, G. L. IV.; Pettus, T. R. R. Pure Appl. Chem.
2012, 84, 1621. For other reports, see: (e) Tsang, K. Y.; Brimble,
M. A. Tetrahedron 2007, 63, 6015. (f) Wu, K.-L.; Wilkinson, S.;
Reich, N. O.; Pettus, T. R. R. Org. Lett. 2007, 9, 5537. (g) Zhang, Y.;
Xue, J.; Xin, Z.; Xie, Z.; Li, Y. Synlett 2008, 940. (h) Zhou, G.; Zhu,
J.; Xie, Z.; Li, Y. Org. Lett. 2008, 10, 721. (i) Marsini, M. A.; Huang,
Y.; Lindsey, C. C.; Wu, K.-L.; Pettus, T. R. R. Org. Lett. 2008, 10,
1477. (j) Venkatesh, C.; Reissig, H.-U. Synthesis 2008, 3605.
(k) Aitken, H. R. M.; Furkert, D. P.; Hubert, J. G.; Wood, J. M.;
Brimble, M. A. Org. Biomol. Chem. 2013, 11, 5147.
O
double–bond
isomerization
intramolecular
ketalization
OH
7
7a
UV from
fluorescent lamp
HO
cis-7
Scheme 2 Proposed mechanism
In summary, we have developed a simple and practical
method for the construction of benzannulated [5,6]spiroke-
tals and [6,6]spiroketals.16 The protocol employs neither
catalyst nor photosensitizer or other additives, and is readi-
ly implemented in a synthetic setting. It is hoped that the
operational simplicity of this method will find some uses in
the synthesis of spiroketal-bearing bioactive substances.
(12) (a) Waldeck, D. H. Chem. Rev. 1991, 91, 415. (b) Arai, T.;
Tokumaru, K. Chem. Rev. 1993, 93, 23.
(13) Prier, C. K.; Rankic, D. A.; MacMillon, D. W. C. Chem. Rev. 2013,
113, 5322.
(14) Singh, K.; Staig, S. J.; Weaver, J. D. J. Am. Chem. Soc. 2014, 136,
5275.
(15) For the UV radiation emissions from fluorescent lamps, see:
(a) Khazova, M.; O’Hagan, J. B. Radiat. Prot. Dosimetry 2008, 131,
521. (b) Mironava, T.; Hadjiargyrou, M.; Simon, M.; Rafailovich,
M. H. Photochem. Photobiol. 2012, 88, 1497. (c) Arceo, E.;
Montroni, E.; Melchiorre, P. Angew. Chem. Int. Ed. 2014, 53,
12064.
Acknowledgment
We thank the Shenzhen Bureau of Science and Technology for finan-
cial support.
(16) Photoinduced Synthesis of Benzannulated Spiroketals;
General Procedure: To a 5 mL flask was added substrate (0.1
mmol) and MeCN (2 mL). The mixture was stirred under irradi-
ation from a household 40 W fluorescent light bulb at ambient
temperature. The progress of the reaction was monitored by
TLC. Upon consumption of starting materials, the mixture was
concentrated under reduced pressure and the residue was puri-
fied by silica gel column chromatography to afford the spiro
product.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
(1) (a) Perron, F.; Albizati, K. F. Chem. Rev. 1989, 89, 1617. (b) Aho, J.
E.; Pihko, P. M.; Rissa, T. K. Chem. Rev. 2005, 105, 4406.
(2) Brockmann, H.; Renneberg, K. H. Naturwissenschaften 1953, 40,
59.
(3) Brockmann, H.; Lenk, W.; Schwantj, G.; Zeeck, A. Chem. Ber.
1969, 102, 126.
(4) Ueno, T.; Takahashi, H.; Oda, M.; Mizunuma, M.; Yokoyama, A.;
Goto, Y.; Mizushina, Y.; Sakaguchi, K.; Hayashi, H. Biochemistry
2000, 39, 5995.
4′,5′-Dihydro-3′H-spiro[chromene-2,2′-furan] (7a): Yield:
1
14.8 mg (93%); colorless liquid. H NMR (400 MHz, CDCl3): δ =
7.18 (td, J = 8.0, 1.6 Hz, 1 H), 7.13 (dd, J = 7.2, 1.2 Hz, 1 H), 6.95–
6.90 (m, 2 H), 6.71 (d, J = 9.6 Hz, 1 H), 5.75 (d, J = 9.6 Hz, 1 H),
4.17–4.12 (m, 1 H), 4.00–3.94 (m, 1 H), 2.42–2.32 (m, 2 H),
2.09–2.00 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 151.7, 129.2,
126.9, 126.8, 122.5, 121.2, 120.3, 116.4, 105.3, 68.2, 39.1, 24.5.
HRMS: m/z [M + H]+ calcd for C12H13O2: 189.0916; found:
189.0909.
(5) (a) Li, A. Y.; Piel, J. Chem. Biol. 2002, 9, 1017. (b) Chino, M.;
Nishikawa, K.; Umekita, M.; Hayashi, C.; Yamazaki, T.; Tsuchida,
T.; Sawa, T.; Hamada, M.; Takeuchi, T. J. Antibiot. 1996, 49, 752.
(6) (a) Qin, D.; Ren, R. X.; Siu, T.; Zheng, C.; Danishefsky, S. J. Angew.
Chem. Int. Ed. 2001, 40, 4709. (b) Siu, T.; Qin, D.; Danishefsky, S.
J. Angew. Chem. Int. Ed. 2001, 40, 4713.
(7) Akai, S.; Kakiguchi, K.; Nakamura, Y.; Kuriwaki, I.; Dohi, T.;
Harada, S.; Kubo, O.; Morita, N.; Kita, Y. Angew. Chem. Int. Ed.
2007, 46, 7458.
3′,4′,5′,6′-Tetrahydrospiro[chromene-2,2′-pyran] (20a): Yield:
10 mg (90%); colorless liquid. 1H NMR (400 MHz, CDCl3): δ =
7.21 (td, J = 8.4, 2.0 Hz, 1 H), 7.14 (dd, J = 7.2, 1.2 Hz, 1 H), 7.01
(d, J = 8.0 Hz, 1 H), 6.95 (td, J = 7.6, 1.2 Hz, 1 H), 6.64 (d,
J = 9.6 Hz, 1 H), 5.73 (d, J = 9.6 Hz, 1 H), 4.03–3.965 (m, 1 H),
3.64–3.60 (m, 1 H), 2.17–2.11 (m, 2 H), 1.80–1.63 (m, 4 H). 13C
NMR (100 MHz, CDCl3): δ = 151.4, 129.1, 127.0, 126.0, 125.4,
121.4, 121.2, 116.5, 95.4, 61.7, 35.0, 24.7, 18.5. HRMS: m/z [M +
H]+ calcd for C13H15O2: 203.1072; found: 203.1067.
(8) Wu, K.-L.; Mercado, E. V.; Pettus, T. R. R. J. Am. Chem. Soc. 2011,
133, 6114.
(9) Wilsdorf, M.; Reissig, H.-U. Angew. Chem. Int. Ed. 2014, 53, 4332.
(10) Wang, W.; Xue, J.; Tian, T.; Zhang, J.; Wei, L.; Shao, J.; Xie, Z.; Li,
Y. Org. Lett. 2013, 15, 2402.
3H-Spiro[benzofuran-2,2′-chromene] (22b): Yield: 12.8 mg
(80%); white solid. 1H NMR (400 MHz, CDCl3): δ = 7.27–7.17 (m,
4 H), 7.00 (td, J = 7.6, 1.2 Hz, 1 H), 6.98–6.91 (m, 2 H), 6.87 (d,
J = 9.6 Hz, 1 H), 6.78 (d, J = 7.6 Hz, 1 H), 5.97 (d, J = 9.6 Hz, 1 H),
3.58 (d, J = 16.8 Hz, 1 H), 3.48 (d, J = 16.8 Hz, 1 H). 13C NMR (100
MHz, CDCl3): δ = 157.1, 150.9, 129.8, 128.4, 127.5, 127.0, 125.3,
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2042–2046