ACS Catalysis
Research Article
zirconia catalyst (entry 3), suggesting a determining role of
Bronsted-like sites in this pathway.
AUTHOR INFORMATION
0250314382.
Author Contributions
N.S. and M.D. contributed equally.
Notes
The authors declare no competing financial interest.
■
When Cu is deposited on the surface the decrease in this
kind of acidic sites, witnessed by intrinsic acidity measurements
carried out with PEA, results in a very low selectivity toward the
ether in favor of the olefinic compound 2, which is then
hydrogenated to pentyl valerate (PV) and never accumulates in
the reaction mixture. The high selectivity observed (entry 7) is
therefore due to both the contribution to acidity of the metallic
phase and its high hydrogenation activity, thereby driving the
reaction toward the upper reaction pathway (Scheme 1). This
effect is even more pronounced in the case of copper deposited
*
§
ACKNOWLEDGMENTS
■
The authors acknowledge financial support by the Italian
Ministry for Education, University and Scientific Research
(MIUR) through the Project PRIN 2010A2FSS9_001.
on SiO with respect to Cu/SiO −ZrO , because residual
2
2
2
Bronsted-like sites on the surface of silica-zirconia make the
lower pathway still possible.
REFERENCES
■
This is in agreement with the very low number of acid sites
observed when titrating with PEA dissolved in 1-pentanol (i.e.,
the actual reaction solvent). The acidity determined in 1-
pentanol corresponds to the effective acidity shown by the
(
1) Perego, C.; Ricci, M. Catal. Sci. Technol. 2012, 2, 1776−1786.
(2) Bozell, J. J. Green Chem. 2010, 12, 525−728.
(3) Climent, M. J.; Corma, A.; Iborra, S. Green Chem. 2014, 16, 516−
5
47.
53
(4) Bermudez, J. M.; Menen
Garcia-Martinez, J.; Luque, R. Green Chem. 2013, 15, 2786−2792.
5) Upare, P. P.; Lee, J.-M.; Hwang, Y. K.; Hwang, D. W.; Lee, J.-H.;
́
dez, J. A.; Romero, A. A.; Serrano, E.;
sample surface in the reaction liquid. Acid−base titration
analysis carried out in the same or similar reaction solvent
allows one to evaluate acidity under conditions similar to those
used during reaction. The amount of effective sites is relevant
for silica and increases in the presence of the supported metal.
All these observations are consistent with the reaction
mechanisms proposed. Thus, the reaction of GVL in the
presence of strong Bronsted sites such as those present on the
(
Shiva, B.; Halligudi, S. B.; Hwang, J.-S.; Chang, J.-S. ChemSusChem
2011, 4, 1749−1752.
(6) Yang, Y.; Gao, G.; Zhang, X.; Li, F. ACS Catal. 2014, 4, 1419−
1
(
2
(
425.
7) Yan, K.; Lafleur, T.; Jarvis, C.; Wu, G. J. Cleaner Prod. 2014, 72,
30−232.
8) Abdelrahman, O. A.; Heyden, A.; Bond, J. Q. ACS Catal. 2014, 4,
surface of Ru/H-β and Ru/H-ZSM5 or Ru/SBA-SO H gives
3
1171−1181.
14,30
pentenoic and pentanoic acids
that are then esterified. On
(9) Mohan, V.; Venkateshwarlu, V.; Pramod, C. V.; Raju, B. D.; Rao,
K. S. R. Catal. Sci. Technol. 2014, 4, 1253−1259.
the contrary, in the presence of Cu/SiO , the lactone ring is
2
(
1
(
10) Fabos, V.; Mika, L. T.; Horvath, I. T. Organometallics 2014, 33,
opened by nucleophilic attack of 1-pentanol to the carbonyl
group activated through interaction with the Lewis acid sites on
the catalyst surface.
81−187.
11) Tang, X.; Chen, H.; Hu, L.; Hao, W.; Sun, Y.; Zeng, X.; Lin, L.;
Liu, S. Appl. Catal., B 2014, 147, 827−834.
12) Yang, Z.; Huang, Y.-B.; Guo, Q.-X.; Fu, Y. Chem. Commun.
2013, 49, 5328−5330.
13) Yuan, J.; Li, S.-S.; Yu, L.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-
N. Energy Environ. Sci. 2013, 6, 3308−3313.
14) Luo, W.; Upakul Deka, U.; Andrew, M.; Beale, A. M.; Ernst, R.
H.; van Eck, E. R. H.; Pieter, C. A.; Bruijnincx, P. C. A.; Weckhuysen,
B. M. J. Catal. 2013, 301, 175−186.
15) Horvath, I. T.; Mehdi, H.; Fabos, V.; Boda, L.; Mika, L. T. Green
Chem. 2008, 10, 238−242.
16) Fegyverneki, D.; Orha, L.; Lang, G.; Horvath, I. T. Tetrahedron
010, 66, 1078−1081.
17) Luterbacher, J. S.; Rand, J. M.; Martin Alonso, D.; Han, J.; Tyler
Youngquist, J.; Maravelias, C. T.; Pfleger, B. F.; Dumesic, J. A. Science
2014, 343, 277−280.
18) Qi, L.; Fung Mui, Y.; Wing Lo, S.; Lui, M. Y.; Akien, G. R.;
Horvath, I. T. ACS Catal. 2014, 4, 1470−1477.
19) Martin Alonso, D.; Wettstein, S. G.; Dumesic, J. A. Green Chem.
013, 15, 584−595.
20) Serrano-Ruiz, J. C.; Luque, R.; Sepulveda-Escribano, A. Chem.
Soc. Rev. 2011, 40, 5266−5281.
21) Martin Alonso, D.; Wettstein, S. G.; Bond, J. Q.; Root, T. W.;
Dumesic, J. A. ChemSusChem 2011, 4, 1078−1081.
(22) Bond, J. Q.; Martin Alonso, D.; Wang, D.; West, R. M.;
Dumesic, J. A. Science 2010, 327, 1110−1114.
23) Bozell, J. J. Science 2010, 329, 522−523.
24) Serrano-Ruiz, J. C.; Braden, D. J.; West, R. M.; Dumesic, J. A.
Appl. Catal., B 2010, 100, 184−189.
25) Bond, J. Q.; Martin Alonso, D.; West, R. M.; Dumesic, J. A.
Langmuir 2010, 26, 16291−16298.
(26) Lange, J.-P.; Price, R.; Ayoub, P. M.; Louis, J.; Petrus, L.; Clarke,
L.; Gosselink, H. Angew. Chem., Int. Ed. 2010, 49, 4479−4483.
(
CONCLUSIONS
■
(
The role of metal dispersion in determining the catalytic
activity in hydrogenation and oxidation reactions has long been
recognized. On the contrary, the influence of the supported
metal particle size on the acidic properties of the catalyst has
very rarely been investigated. The present paper shows that
very small metal particles can exhibit catalytically relevant Lewis
acidity. This property, joined with a significant hydrogenation
activity of the metal, allows one to design new bifunctional
(
(
(
2
(
catalysts, such as Cu/SiO , without the need of an acidic
2
support. In the case of GVL to pentyl valerate reaction, this
translates not only into a more simple catalytic system but also
into a more selective one as a result of the presence of a unique
catalytic site that prevents secondary reactions to take place.
(
(
2
(
ASSOCIATED CONTENT
■
(
*
S
Supporting Information
N adsorption/desorption isotherms; pore volume distribution
2
as a function of pore radius for SiO A and Cu/SiO A; SEM
2
2
(
(
images of silica B surface and 16% Cu catalyst surfaces; XRD of
6% CuO/SiO B; py adsorption spectra at different desorption
1
2
temperature for all reduced and unreduced Cu catalysts;
HRTEM micrograph and particle size distribution of 16% Cu/
(
2
2
825
dx.doi.org/10.1021/cs500581a | ACS Catal. 2014, 4, 2818−2826