Organic Letters
Letter
Activation of Diboron Compounds with Simple Lewis Bases. Angew.
Chem., Int. Ed. 2011, 50, 7158−7161. (b) Miralles, N.; Cid, J.;
oalkenes. Chem. Sci. 2019, 10, 1144−1149. (d) Wang, W.; Ding, C.;
Li, Y.; Li, Z.; Li, Y.; Peng, L.; Yin, G. Migratory Arylboration of
Unactivated Alkenes Enabled by Nickel Catalysis. Angew. Chem., Int.
Ed. 2019, 58, 4612−4616. (e) Peng, L.; Li, Y.; Li, Y.; Wang, W.; Pang,
H.; Yin, G. Ligand-Controlled Nickel-Catalyzed Reductive Relay
Cross-Coupling of Alkyl Bromides and Aryl Bromides. ACS Catal.
2018, 8, 310−313. (f) Peng, L.; Li, Z.; Yin, G. Photochemical Nickel-
Catalyzed Reductive Migratory Cross-Coupling of Alkyl Bromides
with Aryl Bromides. Org. Lett. 2018, 20, 1880−1883.
(11) (a) Lu, X.; Xiao, B.; Zhang, Z.; Gong, T.; Su, W.; Yi, J.; Fu, Y.;
Liu, L. Practical carbon-carbon bond formation from olefins through
nickel-catalyzed reductive olefin hydrocarbonation. Nat. Commun.
2016, 7, 11129. (b) Li, L.; Gong, T.; Lu, X.; Xiao, B.; Fu, Y. Nickel-
catalyzed synthesis of 1,1-diborylalkanes from terminal alkenes. Nat.
Commun. 2017, 8, 345. (c) Wang, G.-Z.; Shang, R.; Cheng, W.-M.;
Fu, Y. Irradiation-Induced Heck Reaction of Unactivated Alkyl
Halides at Room Temperature. J. Am. Chem. Soc. 2017, 139, 18307−
18312. (d) Su, W.; Gong, T.-J.; Lu, X.; Xu, M.-Y.; Yu, C.-G.; Xu, Z.-
Y.; Yu, H.-Z.; Xiao, B.; Fu, Y. Ligand-Controlled Regiodivergent
Copper-Catalyzed Alkylboration of Alkenes. Angew. Chem., Int. Ed.
2015, 54, 12957−12961. (e) Lu, X.; Wang, Y.; Zhang, B.; Pi, J.-J.;
Wang, X.-X.; Gong, T.-J.; Xiao, B.; Fu, Y. Nickel-Catalyzed
Defluorinative Reductive Cross-Coupling of gem-Difluoroalkenes
with Unactivated Secondary and Tertiary Alkyl Halides. J. Am.
Chem. Soc. 2017, 139, 12632−12637. (f) Lu, X.; Wang, X.-X.; Gong,
T.-J.; Pi, J.-J.; He, S.-J.; Fu, Y. Nickel-catalyzed allylic defluorinative
alkylation of trifluoromethyl alkenes with reductive decarboxylation of
redox-active esters. Chem. Sci. 2019, 10, 809−814. (g) Lu, X.; Xiao,
B.; Liu, L.; Fu, Y. Formation of C(sp3)-C(sp3) Bonds through Nickel-
Catalyzed Decarboxylative Olefin Hydroalkylation Reactions. Chem. -
Eur. J. 2016, 22, 11161−11164.
(12) (a) Adams, G. M.; Weller, A. S. POP-type ligands: Variable
coordination and hemilabile behaviour. Coord. Chem. Rev. 2018, 355,
150−172 Generally, large bite angle diphosphine ligands were used to
prevent β-hydride elimination, as no cis-vacant site to the alkyl group
can be formed. This presented reaction requires diphosphine rather
than monophosphine ligand. A reasonable explanation is that one
coordination site would dissociate to form a κ1-P-XantPhos-Cy nickel
complex in the β-hydride elimination event rather than remaining a
κ2-P,P-XantPhos-Cy nickel complex. . (b) Xu, Z.-Y.; Jiang, Y.-Y.; Su,
W.; Yu, H.-Z.; Fu, Y. Mechanism of Ligand-Controlled Regioselec-
tivity-Switchable Copper-Catalyzed Alkylboration of Alkenes. Chem. -
Eur. J. 2016, 22, 14611−14617 In our previous works with copper
catalysts, XantPhos remained κ2-P,P-bound to the copper center,
while κ1-P-XantPhos-Cy copper complex was formed at the oxidative
addition step, also see ref 11d. .
(13) We analyzed the reaction mixture in entries 4 and 7, Table 1.
Under the conditions of entry 7, where Cy-XantPhos was used as the
ligand, 4a was obtained in a large amount as a diboration reaction
intermediate. However, under the conditions of entry 4, where
XantPhos was used as the ligand, inert 4c was obtained
predominantly. Moreover, we also carried out control experiments
without the addition of B2pin2, and >80% starting material 1 was
́
́
Cuenca, A. B.; Carbo, J. J.; Fernandez, E. Mixed diboration of alkenes
in a metal-free context. Chem. Commun. 2015, 51, 1693−1696.
(c) Peng, S.; Liu, G.; Huang, Z. Mixed Diboration of Alkynes
Catalyzed by LiOH: Regio- and Stereoselective Synthesis of cis-1,2-
Diborylalkenes. Org. Lett. 2018, 20, 7363−7366. (d) Gao, G.; Yan, J.;
Yang, K.; Chen, F.; Song, Q. Base-controlled highly selective synthesis
of alkyl 1,2-bis(boronates) or 1,1,2-tris(boronates) from terminal
alkynes. Green Chem. 2017, 19, 3997−4188.
(7) Kubota, K.; Iwamoto, H.; Ito, H. Formal nucleophilic borylation
and borylative cyclization of organic halides. Org. Biomol. Chem. 2017,
15, 285−300.
(8) For selected references for monoborylation of alkyl electrophiles,
see: (a) Li, C.; Wang, J.; Barton, L. M.; Yu, S.; Tian, M.; Peters, D. S.;
Kumar, M.; Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.;
Baran, P. S. Decarboxylative borylation. Science 2017, 356,
No. eaam7355. (b) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga,
T.; Myers, E. L.; Aggarwal, V. K. Photoinduced decarboxylative
borylation of carboxylic acids. Science 2017, 357, 283−286. (c) Basch,
C. H.; Cobb, K. M.; Watson, M. P. Nickel-Catalyzed Borylation of
Benzylic Ammonium Salts: Stereospecific Synthesis of Enantioen-
riched Benzylic Boronates. Org. Lett. 2016, 18, 136−139. (d) Wu, J.;
He, L.; Noble, A.; Aggarwal, V. K. Photoinduced Deaminative
Borylation of Alkylamines. J. Am. Chem. Soc. 2018, 140, 10700−
10704. (e) Wang, Z.; Bachman, S.; Dudnik, A. S.; Fu, G. C. Nickel-
Catalyzed Enantioconvergent Borylation of Racemic Secondary
Benzylic Electrophiles. Angew. Chem., Int. Ed. 2018, 57, 14529−
145329. (f) Atack, T. C.; Lecker, R. M.; Cook, S. P. Iron-Catalyzed
Borylation of Alkyl Electrophiles. J. Am. Chem. Soc. 2014, 136, 9521−
9523. (g) Atack, T. C.; Cook, S. P. Manganese-Catalyzed Borylation
of Unactivated Alkyl Chlorides. J. Am. Chem. Soc. 2016, 138, 6139−
6142. (h) Bose, S. K.; Fucke, K.; Liu, L.; Steel, P. G.; Marder, T. B.
Zinc-Catalyzed Borylation of Primary, Secondary and Tertiary Alkyl
Halides with Alkoxy Diboron Reagents at Room Temperature. Angew.
Chem., Int. Ed. 2014, 53, 1799−1803. (i) Ito, H.; Kubota, K.
Copper(I)-Catalyzed Boryl Substitution of Unactivated Alkyl Halides.
Org. Lett. 2012, 14, 890−893. (j) Yang, C.-T.; Zhang, Z.-Q.;
Tajuddin, H.; Wu, C.-C.; Liang, J.; Liu, J.-H.; Fu, Y.; Czyzewska, M.;
Steel, P. G.; Marder, T. B.; Liu, L. Alkylboronic Esters from Copper-
Catalyzed Borylation of Primary and Secondary Alkyl Halides and
Pseudohalides. Angew. Chem., Int. Ed. 2012, 51, 528−532. (k) Yi, J.;
Liu, J.-H.; Liang, J.; Dai, J.-J.; Yang, C.-T.; Fu, Y.; Liu, L. Alkylboronic
Esters from Palladium- and Nickel-Catalyzed Borylation of Primary
and Secondary Alkyl Bromides. Adv. Synth. Catal. 2012, 354, 1685−
1691. (l) Cheng, Y.; Muck-Lichtenfeld, C.; Studer, A. Metal-Free
̈
Radical Borylation of Alkyl and Aryl Iodides. Angew. Chem., Int. Ed.
2018, 57, 16832−16836.
(9) For selected reviews for nickel-catalyzed cross-coupling, see:
(a) Hu, X. Nickel-catalyzed cross coupling of non-activated alkyl
halides: a mechanistic perspective. Chem. Sci. 2011, 2, 1867−1886.
(b) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Recent advances in
homogeneous nickel catalysis. Nature 2014, 509, 299−309. (c) Fu, G.
C. Transition-Metal Catalysis of Nucleophilic Substitution Reactions:
A Radical Alternative to SN1 and SN2 Processes. ACS Cent. Sci. 2017,
3, 692−700. (d) Jana, R.; Pathak, T. P.; Sigman, M. S. Advances in
Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions
Using Alkyl-organometallics as Reaction Partners. Chem. Rev. 2011,
111, 1417−1492. (e) Choi, J.; Fu, G. C. Transition metal-catalyzed
alkyl-alkyl bond formation: Another dimension in cross-coupling
chemistry. Science 2017, 356, No. eaaf7230.
(14) Hie, L.; Nathel, N. F. F.; Shah, T. K.; Baker, E. L.; Hong, X.;
Yang, Y.-F.; Liu, P.; Houk, K. N.; Garg, N. K. Conversion of amides to
esters by the nickel-catalysed activation of amide C-N bonds. Nature
2015, 524, 79−83.
́
́
(10) (a) Julia-Hernandez, F.; Moragas, T.; Cornella, J.; Martin, R.
Remote carboxylation of halogenated aliphatic hydrocarbons with
carbon dioxide. Nature 2017, 545, 84−88. (b) Chen, F.; Chen, K.;
Zhang, Y.; He, Y.; Wang, Y.-M.; Zhu, S. Remote Migratory Cross-
Electrophile Coupling and Olefin Hydroarylation Reactions Enabled
by in Situ Generation of NiH. J. Am. Chem. Soc. 2017, 139, 13929−
13935. (c) Zhou, L.; Zhu, C.; Bi, P.; Feng, C. Ni-catalyzed migratory
fluoro-alkenylation of unactivated alkyl bromides with gem-difluor-
E
Org. Lett. XXXX, XXX, XXX−XXX