Extensive SAR studies have shed light on key function-
alities of the molecule critical for biological activity.11-13
These studies have shown that the C1-C8 sector constitutes
a critical part of the molecule for biological activity and is
not amenable to change.11-13 The aromatic side chain at C15,
endo-orientation, with the C10-C15 fragment folded beneath
the macrocycle.21 Danishefsky’s group has shown that the
presence of a C-9-C10 trans double bond is well tolerated,22
whereas the corresponding cis-isomer had diminished activ-
ity.23 These findings are consistent with the tubulin-bound
conformation of epothilone A reported by Carlomagno et
al.,15 in which the C8-C10 fragment adopts an antiperiplanar
conformation, analogous to that in the X-ray crystal structure.6b
Thus, the C9-C15 region of the molecule may play an
important role, inter alia, in conformational stabilization
necessary for receptor binding. This may be mainly in setting
the critical relative geometry between the aromatic side chain
and the C1-C8 region. Recent studies on the bioactive
conformation of epothilone underscore the importance of
conformation-activity relationships, in addition to classical
SAR.15,16,20-24
though necessary, can tolerate some modification;11-13
a
nitrogen heterocycle connected to the macrolactone ring by
an olefinic spacer at the position ortho to the nitrogen atom
is the minimum requirement. Nicolaou et al. showed that
replacing the thiazole ring with methylpyridines generated
potent analogues.14 In the tubulin-bound conformation of
epothilone A, as determined by NMR studies in aqueous
solution, the 16-Me and 19-H have been shown to adopt a
syn orientation as in the crystal structure obtained from
methanol/water.15,16 This makes the nitrogen atom of the
aromatic ring more accessible for hydrogen bonding with
receptor functional groups. Active analogues incorporating
substantial modification in the C9-C15 sector have been
synthesized. Analogues with cis and trans C12/C13 olefinic
bonds17,18 as well as C12/C13 cyclopropyl moieties19 retain
substantial activity, pointing to a role for oxirane function
in 1 and 2 as a stabilizer of the bioactive conformation, rather
than serving as an electrophilic center or a hydrogen bond
acceptor.20 Contrary to earlier suggestions of an exo-
oreintation of the epoxide ring, Nettles et al., by a combina-
tion of NMR, electron crystallography, and molecular
modeling studies, proposed that tubulin-bound epothilone A
adopts a conformation in which the epoxide ring is in an
In view of the presumptive role played by the C9-C15
segment in maintaining the conformational stability necessary
for receptor binding, we speculated that a molecule in which
the critical C1-C8 region and the aromatic side chain of
epothilones are held in position by a small molecular scaffold
may satisfy such conformational requirements for receptor
binding and would also add to the repository of molecules
available for SAR comparison.
Accordingly, we designed compound 5a (Scheme 1),
which embodies the critical C1-C8 fragment of natural
Scheme 1
(6) (a) Hofle, G.; Bedorf, N.; Gerth, K.; Reichenbach, H. (GFE), DE-B
4138042, 1993 [Chem. Abstr. 1993, 120, 52841]. (b) Hofle, G.; Bedorf,
N.; Steinmetz, H.; Schomburg, D.; Girth, K.; Reichenbach, H. Angew.
Chem., Int. Ed. Engl. 1996, 35, 1567. (c) Gerth, K.; Bedorf, N.; Hofle, G.;
Irschik, H.; Reichenbach, H. J. Antibiot. 1996, 49, 560. (d) Bollag, D. M.;
McQueney, P. A.; Zhu, J.; Hensens, O.; Koupal, L.; Liesch, J.; Goetz, M.;
Lazarides, E.; Woods, C. M. Cancer Res. 1995, 55, 2325.
(7) (a) Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Schulte, G.
K. J. Org. Chem. 1990, 55, 4912. (b) Longley, E.; Caddigan, D.; Harmody,
D.; Gunasekera, M.; Gunasekera, S. Transplantation 1991, 52, 650. (c) Ter
Haar, E.; Kowalski, R.; Hamel, E.; Lin, C.; Longley, R.; Gunasekera, S.;
Rosenkranz, H.; Day, B. Biochemistry 1996, 35, 243.
(8) (a) D’Ambrosio, M.; Guerriero, A.; Pietra, F. HelV. Chim. Acta 1987,
70, 2019. (b) D’Ambrosio, M.; Guerriero, A.; Pietra, F. HelV. Chim. Acta
1988, 71, 964. (c) Ketzinel, S.; Rudi, A.; Schleyer, M.; Benayahu, Y.;
Kashman, Y. J. Nat. Prod. 1996, 59, 873. (d) Lindel, T.; Jensen, P.; Fenical,
W.; Long, B.; Casazza, A.; Carboni, J.; Fairchild, C. J. Am. Chem. Soc.
1997, 119, 8744.
(9) Corley, D.; Herb, R.; Moore, R.; Scheuer, P.; Paul, V. J. Org. Chem.
1988, 53, 3644.
(10) Altmann, K.-H. Curr. Opin. Chem. Biol. 2001, 5, 424.
(11) Wartmann, M.; Altmann, K.-H. Curr. Med. Chem.: Anti-Cancer
Agents 2002, 2, 123.
(12) Nicolaou, K. C.; Roschanger, F.; Vourloumis, D. Angew. Chem.,
Int. Ed. 1998, 37, 2014.
(13) Su, D. S.; Balog, A.; Meng, D.; Bertinato, P.; Danishefsky, S. J.;
Zheng, Y. H.; Chou, T. C.; He, L.; Horwitz, S. B. Angew. Chem., Int. Ed.
Engl. 1997, 36, 2093.
(14) Nicolaou, K. C.; Scarpelli, R.; Bollbuck, B.; Werschkun, B.; Pereira,
M.; Wartmann, M.; Altmann, K.-H.; Zaharevtiz, D.; Gussio, R.; Gianna-
kakou, P. Chem. Biol. 2000, 7, 593.
(15) Carlomagno, T.; Blommers, M. J. J.; Meiler, J.; Jahnke, W.; Schupp,
T.; Petersen, F.; Schinzer, D.; Altmann, K.-H.; Griesinger, C. Angew. Chem.,
Int. Ed. Engl. 2003, 42, 2511.
(16) Heinz, D. W.; Schubert, W.-D.; Hofle, G. Angew. Chem., Int. Ed.
Engl. 2005, 44,1298.
(17) (a) Meng, D.; Su, D. S.; Balog, A.; Bertinato, P.; Sorensen, E. J.;
Danishefsky, S. J.; Zheng, Y. H.; Chou, T. C.; He, L.; Horwitz, S. B. J.
Am. Chem. Soc. 1997, 119, 2733. (b) Danishefsky, S. J.; Zheng, Y. H.;
Chou, T. C.; He, L.; Horwitz, S. B. Angew. Chem., Int. Ed. Engl. 1997, 36,
757.
epothilone, including all crucial stereocenters. The methyl-
substituted olefinic spacer was incorporated in a cyclopen-
686
Org. Lett., Vol. 8, No. 4, 2006