Running title
Chin. J. Chem.
Science 2008, 64, 319-325; (c) Horsman, G. P.; Zechel, D. L.
Phosphonate Biochemistry. Chem. Rev. 2017, 117, 5704-5783; (d)
Martin, R.; Buchwald, S. L. Palladium-Catalyzed Suzuki−Miyaura
Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands.
Acc. Chem. Res. 2008, 41, 1461-1473; (e) Mucha, A.; Kafarski, P.;
19, 600-603; (e) Ma, Y.-N.; Li, S.-X.; Yang, S.-D. New Approaches for
Biaryl-Based Phosphine Ligand Synthesis via P=O Directed C–H
Functionalizations. Acc. Chem. Res. 2017, 50, 1480-1492; (f) Tang, W.;
Zhang, X. New Chiral Phosphorus Ligands for Enantioselective
Hydrogenation. Chem. Rev. 2003, 103, 3029-3070; (g) Wang, H.-L.; Hu,
R.-B.; Zhang, H.; Zhou, A.-X.; Yang, S.-D. Pd(II)-Catalyzed
Ph2(O)P-Directed C–H Olefination toward Phosphine–Alkene Ligands.
Org. Lett. 2013, 15, 5302-5305.
Berlicki,
Ł.
Remarkable
Potential
of
the
α-Aminophosphonate/Phosphinate Structural Motif in Medicinal
Chemistry. J. Med. Chem. 2011, 54, 5955-5980; (f) Nowack, B.
Environmental chemistry of phosphonates. Water Res. 2003, 37,
2533-2546; (g) Peng, H.-Q.; Wang, Y.-Z. Effects of Boric Acid on Flame
Retardancy of Intumescent Flame-Retardant Polypropylene Systems
Containing a Caged Bicyclic Phosphate. In Fire and Polymers V,
American Chemical Society: 2009; Vol. 1013, pp 225-248; (h)
Queffélec, C.; Petit, M.; Janvier, P.; Knight, D. A.; Bujoli, B. Surface
Modification Using Phosphonic Acids and Esters. Chem. Rev. 2012,
112, 3777-3807; (i) Zbigniew, H. K.; Marcin, H. K.; Jozef, D.; Chris, V. S.
Aminophosphonic Acids-Phosphorus Analogues of Natural Amino
Acids.Part 1: Syntheses of α-Aminophosphonic Acids. Curr. Org. Chem.
2011, 15, 2015-2071; (j) Zhan, J.; Song, L.; Hu, Y. Combustion and
[4] (a) Cheruku, P.; Paptchikhine, A.; Church, T. L.; Andersson, P. G.
Iridium-N,P-Ligand-Catalyzed Enantioselective Hydrogenation of
Diphenylvinylphosphine Oxides and Vinylphosphonates. J. Am. Chem.
Soc. 2009, 131, 8285-8289; (b) Dong, K.; Wang, Z.; Ding, K.
Rh(I)-Catalyzed Enantioselective Hydrogenation of α-Substituted
Ethenylphosphonic Acids. J. Am. Chem. Soc. 2012, 134, 12474-12477;
(c) He, S.-J.; Wang, J.-W.; Li, Y.; Xu, Z.-Y.; Wang, X.-X.; Lu, X.; Fu, Y.
Nickel-Catalyzed Enantioconvergent Reductive Hydroalkylation of
Olefins with α-Heteroatom Phosphorus or Sulfur Alkyl Electrophiles. J.
Am. Chem. Soc. 2020, 142, 214-221.
[5] (a) Bou Orm, N.; Dkhissi, Y.; Daniele, S.; Djakovitch, L. Synthesis of
2-(arylamino)ethyl phosphonic acids via the aza-Michael addition on
diethyl vinylphosphonate. Tetrahedron 2013, 69, 115-121; (b) Huang,
H.; Zhu, H.; Kang, J. Y. Regio- and Stereoselective
Hydrophosphorylation of Ynamides for the Synthesis of
β-Aminovinylphosphine Oxides. Org. Lett. 2018, 20, 2778-2781; (c)
Lefevre, N.; Brayer, J.-L.; Folléas, B.; Darses, S. Chiral α-Amino
Phosphonates via Rhodium-Catalyzed Asymmetric 1,4-Addition
Reactions. Org. Lett. 2013, 15, 4274-4276; (d) Ruiz, M.; Fernández, M.
C.; Díaz, A.; Quintela, J. M.; Ojea, V. Diastereoselective Synthesis of
2-Amino-4-phosphonobutanoic Acids by Conjugate Addition of
Lithiated Schöllkopf's Bislactim Ethers to Vinylphosphonates. J. Org.
Chem. 2003, 68, 7634-7645; (e) Soller, B. S.; Salzinger, S.; Rieger, B.
Thermal
Properties
of
Polylactide
with
an
Effective
Phosphate-Containing Flame-Retardant Oligomer. In Fire and Polymers
V, American Chemical Society: 2009; Vol. 1013, pp 205-223.
[2] (a) Ávila, D. S.; Gubert, P.; Palma, A.; Colle, D.; Alves, D.; Nogueira, C.
W.; Rocha, J. B. T.; Soares, F. A. A. An organotellurium compound with
antioxidant activity against excitotoxic agents without neurotoxic
effects in brain of rats. Brain Res. Bull. 2008, 76, 114-123; (b)
Motoyoshiya, J.; Ikeda, T.; Tsuboi, S.; Kusaura, T. Takeuchi, Y.; Hayashi,
S.; Yoshioka, S.; Takaguchi, Y.; Aoyama, H. Chemiluminescence in
Autoxidation of Phosphonate Carbanions. Phospha-1,2-dioxetanes as
the Most Likely High-Energy Intermediates. J. Org. Chem. 2003, 68,
5950-5955; (c) Parmar, R.; Willoughby, J. L. S.; Liu, J.; Foster, D. J.;
Brigham, B.; Theile, C. S.; Charisse, K.; Akinc, A.; Guidry, E.; Pei, Y.;
Strapps, W.; Cancilla, M.; Stanton, M. G.; Rajeev, K. G.; Sepp-Lorenzino,
L.; Manoharan, M.; Meyers, R.; Maier, M. A.; Jadhav, V.
5′-(E)-Vinylphosphonate: A Stable Phosphate Mimic Can Improve the
RNAi Activity of siRNA–GalNAc Conjugates. Chem. Bio. Chem. 2016, 17,
985-989; (d) Renata, G.; Marcin, S. Phosphonic Esters and their
Application of Protease Control. Curr. Pharm. Design, 2013, 19,
1154-1178; (e) Schwender, C. F.; Beers, S. A.; Malloy, E. A.; Cinicola, J.
J.; Wustrow, D. J.; Demarest, K. D.; Jordan, J. Benzylphosphonic acid
inhibitors of human prostatic acid phosphatase. Bioorg. Med. Chem.
Lett. 1996, 6, 311-314; (f) Shi, Z.-D.; Yang, B.-H.; Zhao, J.-J.; Wu, Y.-L.; Ji,
Y.-Y.; Yeh, M. Enantioselective hydrolysis of naproxen ethyl ester
catalyzed by monoclonal antibodies. Biorg. Med. Chem. 2002, 10,
2171-2175; (g) Valentine, W. J.; Kiss, G. N.; Liu, J.; E, S.; Gotoh, M.;
Murakami-Murofushi, K.; Pham, T. C.; Baker, D. L.; Parrill, A. L.; Lu, X.;
Sun, C.; Bittman, R.; Pyne, N. J.; Tigyi, G. (S)-FTY720-Vinylphosphonate,
Rare
Earth
Metal-Mediated
Precision
Polymerization
of
Vinylphosphonates and Conjugated Nitrogen-Containing Vinyl
Monomers. Chem. Rev. 2016, 116, 1993-2022.
[6] (a) Baumann, A. L.; Schwagerus, S.; Broi, K.; Kemnitz-Hassanin, K.;
Stieger, C. E.; Trieloff, N.; Schmieder, P.; Hackenberger, C. P. R.
Chemically Induced Vinylphosphonothiolate Electrophiles for
Thiol–Thiol Bioconjugations. J. Am. Chem. Soc. 2020, 142, 9544-9552;
(b) Buquoi, J. Q.; Lear, J. M.; Gu, X.; Nagib, D. A. Heteroarene
Phosphinylalkylation via
a Catalytic, Polarity-Reversing Radical
Cascade. ACS Catal. 2019, 9, 5330-5335; (c) Chen, F.; Xia, Y.; Lin, R.;
Gao, Y.; Xu, P.; Zhao, Y. Copper-Catalyzed Direct Twofold C–P
Cross-Coupling of Unprotected Propargylic 1,4-Diols: Access to
2,3-Bis(diarylphosphynyl)-1,3-butadienes. Org. Lett. 2019, 21, 579-583;
(d) Chen, T.; Zhao, C.-Q.; Han, L.-B. Hydrophosphorylation of Alkynes
Catalyzed by Palladium: Generality and Mechanism. J. Am. Chem. Soc.
2018, 140, 3139-3155; (e) Gao, Y.; Wang, G.; Chen, L.; Xu, P.; Zhao, Y.;
Zhou, Y.; Han, L.-B. Copper-Catalyzed Aerobic Oxidative Coupling of
an analogue of the immunosuppressive agent FTY720, is
a
pan-antagonist of sphingosine 1-phosphate GPCR signaling and inhibits
autotaxin activity. Cell. Signal. 2010, 22, 1543-1553; (h) Virieux, D.;
Sevrain, N.; Ayad, T.; Pirat, J.-L. Chapter Two-Helical Phosphorus
Derivatives: Synthesis and Applications. In Adv. Heterocycl. Chem.,
Scriven, E. F. V.; Ramsden, C. A. Eds. Academic Press: 2015; Vol. 116,
pp 37-83; (i) Younes, S.; Baziard-Mouysset, G.; de Saqui-Sannes, G.;
Stigliani, J. L.; Payard, M.; Bonnafous, R.; Tisne-Versailles, J. Synthesis
and pharmacological study of new calcium antagonists, analogues of
cinnarizine and flunarizine. Eur. J. Med. Chem. 1993, 28, 943-948.
[3] (a) Feng, J.-J.; Chen, X.-F.; Shi, M.; Duan, W.-L. Palladium-Catalyzed
Asymmetric Addition of Diarylphosphines to Enones toward the
Synthesis of Chiral Phosphines. J. Am. Chem. Soc. 2010, 132,
5562-5563; (b) Horner, L.; Hoffmann, H.; Wippel, H. G.
Phosphororganische Verbindungen, XII. Phosphinoxyde als
Olefinierungsreagenzien. Chem. Ber. 1958, 91, 61-63; (c) Juan, A. B.;
Liliana, R. O. Recent Progress in the Horner-Wadsworth-Emmons
Reaction. Curr. Org. Chem. 2015, 19, 744-775; (d) Ma, Y.-N.; Cheng,
M.-X.; Yang, S.-D. Diastereoselective Radical Oxidative C–H Aminations
toward Chiral Atropoisomeric (P, N) Ligand Precursors. Org. Lett. 2017,
Terminal
Alkynes
with
H-Phosphonates
Leading
to
Alkynylphosphonates. J. Am. Chem. Soc. 2009, 131, 7956-7957; (f)
Khemchyan, L. L.; Ivanova, J. V.; Zalesskiy, S. S.; Ananikov, V. P.;
Beletskaya, I. P.; Starikova, Z. A. Unprecedented Control of Selectivity
in Nickel-Catalyzed Hydrophosphorylation of Alkynes: Efficient Route
to Mono- and Bisphosphonates. Adv. Synth. Catal. 2014, 356, 771-780;
(g) Li, Y.-M.; Sun, M.; Wang, H.-L.; Tian, Q.-P.; Yang, S.-D. Direct
Annulations toward Phosphorylated Oxindoles: Silver-Catalyzed
Carbon-Phosphorus Functionalization of Alkenes. Angew. Chem. Int.
Ed. 2013, 52, 3972-3976; (h) Ma, Y.-N.; Zhang, H.-Y.; Yang, S.-D.
Pd(II)-Catalyzed P(O)R1R2-Directed Asymmetric C–H Activation and
Dynamic Kinetic Resolution for the Synthesis of Chiral Biaryl
Phosphates. Org. Lett. 2015, 17, 2034-2037; (i) Ren, L.; Ran, M.; He, J.;
Xiang, D.; Chen, F.; Liu, P.; He, C.; Yao, Q. A Palladium-Catalyzed
Decarboxylative
Heck-Type
Reaction
of
Disubstituted
Vinylphosphonates in the Stereoselective Synthesis of Trisubstituted
Vinylphosphonates. Eur. J. Org. Chem. 2019, 2019, 5656-5661; (j) Ren,
W.; Zuo, Q.-M.; Niu, Y.-N.; Yang, S.-D. Palladium–NHC-Catalyzed Allylic
Alkylation of Pronucleophiles with Alkynes. Org. Lett. 2019, 21,
Chin. J. Chem. 2021,39, XXX-XXX
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH