C O M M U N I C A T I O N S
Table 3. Gold-Catalyzed Substitution of Propargylic Alcohols 1
References
with Various Nucleophilesa
(1) (a) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207. (b) Green, J. R. Curr.
Org. Chem. 2001, 5, 809. (c) Teobald, B. J. Tetrahedron 2002, 58, 4133.
(2) (a) Luzung, M. R.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 15760. (b)
Sherry, B. D.; Radosevich, A. T.; Toste, F. D. J. Am. Chem. Soc. 2003,
125, 6076. (c) Kennedy-Smith, J. J.; Young, L. A.; Toste, F. D. Org.
Lett. 2004, 6, 1325.
(3) (a) Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc. 2000, 122,
11019. (b) Nishibayashi, Y.; Wakiji, I.; Ishii, Y.; Uemura, S.; Hidai, M.
J. Am. Chem. Soc. 2001, 123, 3393. (c) Nishibayashi, Y.; Yoshikawa,
M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 11846.
(d) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai,
M.; Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 2681. (e) Milton, M.
D.; Inada, Y.; Nishibayashi, Y.; Uemura, S. Chem. Commun. 2004, 2712.
(f) Nishibayashi, Y.; Milton, M. D.; Inada, Y.; Yoshikawa, M.; Wakiji,
I.; Hidai, M.; Uemura, S. Chem.sEur. J. 2005, 11, 1433. (g) For a seminal
report on the reactivity of Ru-allenylidenes with alcohols, see: Trost,
B. M.; Flygare, J. A. J. Am. Chem. Soc. 1992, 114, 5476.
isolated
entry
R1; R2; R3
Nu
−
H
product
yield (%)
1
2
3
4
Ph; H; n-pentyl
Ph; H; TMS
Me; Me; Ph
butanol
2l
2m
2n
88
75
79
see text
Scheme 3
72
3-buten-1-ol
HO(CH2)3Cl
ethanol
Ph; H; n-pentyl
2o/4
5
6
7
8
9
Me; Me; Ph
Ph; H; TMS
Ph; H; TMS
Ph; H; Ph
Ph; H; n-pentyl
Ph; H; Ph
ethanol
5
b
(1,3-diOMe)C6H4
methoxybenzenec
furan
HSCH2COOEt
PhSH
2p
2q
2r
2s
2t
2u
75
65d
46
66
10
11
50
Ph; H; Ph
Boc(L)-CysOEt
35e
(4) For excellent recent reviews, see: (a) Dyker, G. Angew. Chem., Int. Ed.
2000, 39, 4237. (b) Hashmi, A. S. K. Gold Bull. 2004, 37, 51. (c)
Hoffmann-Ro¨der, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387.
a Reactions carried out at room temperature, in DCM, in the presence
of NaAuCl4‚2H2O (5%). b 5 equiv of nucleophile have been used. c 1.1 equiv
of nucleophile have been used. d Obtained as a 10:1 mixture of para/others
isomers. e Obtained as 1:1 mixture of the two diastereoisomers.
(5) For recent selected examples, see: (a) Teles, J. H.; Brode, S.; Chabanas,
M. Angew. Chem., Int. Ed. 1998, 37, 1415. (b) Sherry, B. D.; Toste, F.
D. J. Am. Chem. Soc. 2004, 126, 15978. (c) Kennedy-Smith, J. J.; Staben,
S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526. (d) Shi, X.; Gorin,
D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802. (e) Zhang, L.;
Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962. (f) Yang, C.-G.; He,
C. J. Am. Chem. Soc. 2005, 127, 6966. (g) Zhang, L.; Kozmin, S. A. J.
Am. Chem. Soc. 2004, 126, 11806. (h) Yao, T.; Zhang, X.; Larock, R. C.
J. Am. Chem. Soc. 2004, 126, 11164. (i) Staben, S. T.; Kennedy-Smith,
J. J.; Toste, F. D. Angew. Chem., Int. Ed. 2004, 43, 5350. (j) Asao, N.;
Sato, K.; Menggenbateer; Yamamoto, Y. J. Org. Chem. 2005, 70, 3682.
(k) Mamane, V.; Gress, T.; Krause, H.; Fu¨rstner, A. J. Am. Chem. Soc.
2004, 126, 8654. (l) Mamane, V.; Hannen, P.; Fu¨rstner, A.; Gress, T.;
Krause, H. Chem.sEur. J. 2004, 10, 4556. (m) Morita, N.; Krause, N.
Org. Lett. 2004, 6, 4121. (n) Munoz, M. P.; Adrio, J.; Carretero, J. C.;
Echavarren, A. M. Organometallics 2005, 24, 1293. (o) Casado, R.; Contel,
M.; Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925. (p) Luzung,
M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858.
(q) Nieto-Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas,
D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402. (r) Shi,
Z.; He, C. J. Am. Chem. Soc. 2004, 126, 5964. (s) Yao, X.; Li, C. J. J.
Am. Chem. Soc. 2004, 126, 6884. (t) Shi, Z.; He, C. J. Am. Chem. Soc.
2004, 126, 13596. (u) Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669. (v)
Antoniotti, S.; Genin, E.; Michelet, V.; Geneˆt, J.-P. J. Am. Chem. Soc.
2005, 127, 9976.
Scheme 3
Scheme 4
(6) For seminal examples illustrating this concept, see: (a) Asao, N.; Asano,
T.; Ohishi, T.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 4817. (b)
Asao, N.; Ohishi, T.; Sato, K.; Yamamoto, Y. J. Am. Chem. Soc. 2001,
123, 6931. (c) Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y. J.
Am. Chem. Soc. 2002, 124, 764.
(7) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 2013.
metal.6c The reaction proceeds under very mild conditions (dichlo-
romethane, room temperature) with a commercially available
catalyst, with water as the only byproduct. Further developments
on this methodology are currently going on in our laboratories.
(8) Midland, M. M.; Tramontano, A.; Kazubski, A.; Graham, R. S.; Tsai, D.
J. S.; Cardin, D. B. Tetrahedron 1984, 40, 1371.
(9) (a) However, no Ritter reaction could be observed in the presence of
acetonitrile. (b) In the presence of electron-rich aromatic nucleophiles
(Table 3, entries 6-8), an alternative mechanism first involving the direct
metalation of the arene (and H+ release) can be envisioned (see ref 5u).
(10) One referee has suggested that HCl (from the reaction of water with the
gold complex) might be the actual catalyst. Although such a mechanism
cannot totally be excluded in some particular cases, no reaction occurred
in a model reaction with 1a and butanol (see Table 3, entry 1) in the
presence of 10% (and up to a stoichiometric amount) of HCl.
Acknowledgment. We are grateful to the CNRS for financial
support, and MENRT-France (M.G.) for a grant.
Supporting Information Available: Experimental details and
characterization for all new compounds (PDF). This material is available
JA0534147
9
J. AM. CHEM. SOC. VOL. 127, NO. 41, 2005 14181