10.1002/chem.201900493
Chemistry - A European Journal
COMMUNICATION
[7]
[8]
a) W. Uhl, A. Hentschel, D. Kovert, J. Kösters, M. Layh, Eur. J. Inorg.
Chem. 2015, 2486-2496; b) R. Eastmond, T. R. Johnson, D. R. M.
Walton, Tetrahedron 1972, 28, 4601-4616;
regenerating the catalyst with water being formed as the
byproduct (the suggested mechanism is depicted in Scheme S1).
In summary, AuPd-based nanoparticle catalysts for selective
dehydrogenative cross coupling between alkynes and
hydrosilanes were developed. While monometallic Au
nanoparticles were found to be inactive, monometallic Pd
nanoparticles showed low efficiency in this CDC. Notably, this is
the first report of Pd nanoparticles showing activity in the CDC of
silanes with alkynes. Efficiency was significantly improved by
using readily prepared AuPd nanoparticle alloys as catalysts.
Reactions proceed under mild conditions and many functional
groups are tolerated.
a) M. G. Voronkov, N. J. Ushakova, I. I. Tsykhaskaya, V. B.
Pukhnarevich, J. Organomet. Chem. 1984, 264, 39-48; b) C.-H. Jun, R.
H. Crabtree, J. Organomet. Chem. 1993, 447, 177-187; c) R. Shimizu, T.
Fuchikami, Tetrahedron Lett. 2000, 41, 907–910; d) H. Q. Liu, J. F.
Harrod, Can. J. Chem. 1990, 68, 1100-1105; e) T. Tsuchimoto, M. Fujii,
Y. Iketani, M. Sekine, Adv. Synth. Catal. 2012, 354, 2959-2964; f) K.
Takaki, M. Kurioka, T. Kamata, K. Takehira, Y. Makioka, Y. Fujiwara, J.
Org. Chem. 1998, 63, 9265-9269.
[9]
a) J-i. Ishikawa, M. Itoh, J. Catal. 1999, 185, 454−461; b) M. R. Calas, P.
Bourgeois, C. R. Acad. Sci. Ser. C, 1969, 268, 72-74; c) M. Itoh, M.
Mitsuzuka, T. Utsumi, K. Iwata, K. Inoue, J. Organomet. Chem. 1994,
476, C30-C31; d) A. A. Toutov, K. N. Betz, D. P. Schuman, W.-B. Liu, A.
Fedorov, B. M. Stoltz, R. H. Grubbs, J. Am. Chem. Soc. 2017, 139,
1668−1674; e) J.-i. Ishikawa, K. Inoue, M. Itoh, J. Organomet. Chem.
1998, 552, 303–311; f) M. Itoh, M. Kobayashi, J. Ishikawa,
Organometallics 1997, 16, 3068-3070, g) T. Baba, A. Kato, H. Yuasa, F.
Toriyama, H. Handa, Y. Ono, Catal. Today 1998, 44, 271-276; h) M.
Skrodzki, S. Witomska, P. Pawluć, Dalton Trans. 2018, 47, 5948-5951;
i) Y. Ma, S.-J. Lou, G. Luo, Y. Luo, G. Zhan, M. Nishiura, Y. Luo, Z. Hou,
Angew. Chem. Int. Ed. 2018, 57, 15222-15226; Angew. Chem. 2018,
130, 15442-15446.
Acknowledgements
Sebastian Lamping (Organic Chemistry Institute, University of
Mꢀnster) is acknowledged for performing XPS measurements,
Maximilian Niehues (Organic Chemistry Institute, University of
Mꢀnster) for recording TEM- and HAADF-STEM-images, Dr. Uta
Rodehorst (Münster Electrochemical Energy Technology Institute,
University of Mꢀnster) for performing XRD measurements, and
Grete Hoffmann and Dr. Dirk Leifert (Organic Chemistry Institute,
University of Mꢀnster) for fruitful discussions. We also thank the
Deutsche Forschungsgemeinschaft DFG (SFB858) for supporting
this work.
[10] a) K. Yamaguchi, Y. Wang, T. Oishi, Y. Kuroda, N. Mizuno, Angew.
Chem. Int. Ed. 2013, 52, 5627-5630; Angew. Chem. 2013, 125, 5737-
5740; b) R. D. Kavthe, Y. Ishikawa, I. Kusuma, N. Asao, Chem. Eur. J.
2018, 24, 15777-15780.
[11] a) R. Ferrando, J. Jellinek, R. L. Johnston, Chem. Rev. 2008, 108, 845-
910; b) F. Tao, Chem. Soc. Rev. 2012, 41, 7977-7979.
[12] for some selected examples see: a) N. Agarwal, S. J. Freakley, R. U.
McVicker, S. M. Althahban, N. Dimitratos, Q. He, D. J. Morgan, R. L.
Jenkins, D. J. Willock, S. H. Taylor, C. J. Kiely, G. J. Hutchings, Science
2017, 358, 223-227; b) P. Landon. P. J. Collier, A. J. Papworth, C. J.
Kiely, G. J. Hutchings, Chem.Commun. 2002, 2058-2059; c) J. S.
Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D. J. Schiffrin, J.
Am. Chem. Soc. 2011, 133, 19432-19441; d) M. Chen, D. Kumar, C.-W.
Yi, D. W. Goodman, Science 2005, 310, 291-293; e) D. I. Enache, J. K.
Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing, M.
Watanabe, C.J. Kiely, D. W. Knight, G. J. Hutchings, Science 2006, 311,
362-365; f) M. O. Nutt, J. B. Hughes, M. S. Wong, Environ. Sci. Technol.
2005, 39, 1346-1353.; g) S. Seraj, P. Kunal, H. Li, G. Henkelman, S. M.
Humphrey, C. J. Werth, ACS Catal. 2017, 7, 3268-3276.
Keywords: nanoalloys • cross-dehydrogenative coupling •
photochemistry • AuPd nanoparticles • catalysis
[1]
[2]
C. J. Scheuermann, Chem. Asian J. 2010, 5, 436-451.
P. G. M. Wuts, Greene's Protective Groups in Organic Synthesis, 5th
Edition, John Wiley & Sons, Inc., Hoboken, 2014, 1194-1202.
a) S. Ohno, K. Takamoto, H. Fujioka, M. Arisawa, Org. Lett. 2017, 19,
2422−2425; b) B. M. Trost, M.T. Rudd, M. Gulías Costa, P. I. Lee, A. E.
Pomerantz, Org. Lett., 2004, 6, 4235–4238.
[3]
[4]
[5]
a) G.Hilt, J. Janikowski, Org. Lett. 2009, 11, 773-776; b) R. Mꢁckel, G.
Hilt, Org. Lett. 2015, 17, 1644−1647.
a) T. Komiyama, Y. Minami, T. Hiyama, ACS Catal. 2017, 7, 631-651; b)
R. Chinchilla, C. Nájera, Chem. Soc. Rev. 2011, 40, 5084-5121; c) J.P.
Brand, D. Fernández González, S. Nicolai, J. Waser, Chem. Commun.
2011, 47, 102–115; d) S. Kim, J. Rojas-Martin, F. D. Toste, Chem. Sci.
2016, 7, 85-88; e) R. B. Lettan II, K. A. Scheidt, Org. Lett. 2005, 7, 3227-
3230; f) K. Aikawa, Y. Hioki, K. Mikami, Org. Lett. 2010, 12, 5716-5719;
g) K. Sa-ei, J. Montgomery, Org. Lett. 2006, 8, 4441-4443; h) Y.
Nishihara, K. Ikegashira, A. Mori, T. Hiyama, Tetrahedron Lett. 1998, 39,
4075-4078; i) Y. Nishihara, J.-i. Ando, T. Kato, A. Mori, Macromolecules
2000, 33, 2779-2781.
[13] a) H. Miura, K. Endo, R. Ogawa, T. Shishido, ACS Catal. 2017, 7, 1543-
1553; b) H. Miura, S. Sasaki, R. Ogawa, T. Shishido, Eur. J. Org. Chem.
2018, 1858-1862.
[14] M. Wissing, M. Niehues, B. J. Ravoo, A. Studer, Eur. J. Org. Chem. 2018,
3403-3409.
[15] a) F. Mäsing, A. Mardyukov, C. Doerenkamp, H. Eckert, U. Malkus, H.
Nüsse, J. Klingauf, A. Studer, Angew. Chem. Int. Ed. 2015, 54, 12612-
12617; Angew. Chem. 2015, 127, 12803-12808; b) D. Srimani, S. Sawoo,
A. Sarkar, Org. Lett. 2007, 9, 3639-3642.
[16] a) S. Zhang, K. L. Chandra, C. B. Gorman, J. Am. Chem. Soc. 2007, 129,
4876-4877; b) We studied the amount of alkyne present in the reaction
mixture before and after addition and subsequent removal of the catalyst.
GC-analysis revealed that only 89% of the originally added amount of
alkyne 1a were left in solution, supporting our assumption.
[6]
a) A. L. K. Shi Shun, R. R. Tykwinski, Angew. Chem. Int. Ed. 2006, 45,
1034-1057; Angew. Chem. 2006, 118, 1050-1073; b) K. A. Keaton, A. J.
Phillips, J. Am. Chem. Soc. 2006, 128, 408-409; c) T. A. Blumenkopf, L.
E. Overman, Chem. Rev. 1986, 86, 857-873; d) H. Yao, M. Sabat; R. N.
Grimes, F. F. de Biani, P. Zanello, Angew. Chem., Int. Ed. 2003, 42,
1002-1005; Angew. Chem. 2003, 115, 1032-1035; e) R. Gleiter, D. B.
Werz, Chem. Rev. 2010, 110, 4447–4488; f) S. Eisler N. Chahal R.
McDonald, R. R. Tykwinski, Chem. Eur. J. 2003, 9, 2542-2550; f) M. Itoh,
K. Inoue, K. Iwata, M. Mitsuzuka, T. Kakigano, Macromolecules 1997,
30, 694-701; g) W.-Y. Wong, C.-K. Wong, G.-L. Lu, A. W.-M. Lee, K.-W.
Cheah, J.-X. Shi, Macromolecules 2003, 36, 983-990; h) R. J. P. Corriu,
W. E. Douglas, Z.-X. Yang, J. Polym. Sci. C, 1990, 28, 431-437; i) J. A.
Marsden, J. J. Miller, L. D. Shirtcliff, M. M. Haley, J. Am. Chem. Soc.
2005, 127, 2464-2476; j) R. Gleiter, W. Schäfer, H. Sakurai, J. Am.
Chem. Soc. 1985, 107, 3046-3050.
[17] a) K. L. Luska, A. Moores, Adv. Synth. Catal. 2011, 353, 3167-3177; b)
M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem.
Soc., Chem. Commun. 1994, 801-802.
[18] M. H. Dishner, J. C. Hemminger, F. J. Feher, Langmuir 1996, 12, 6176-
6178.
[19] M. Steinmetz, K. Ueda, S. Grimme, J. Yamaguchi, S. Kirchberg, K. Itami,
A. Studer, Chem. Asian J. 2012, 7, 1256-1260.
This article is protected by copyright. All rights reserved.