Communication
ChemComm
observed for the AP sample (Table 2, entries 5 to 7 and 3). The ZP Notes and reference
sample also exhibited the same trend in conversion of cyclo-
1 (a) P. Behrens, Adv. Mater., 1993, 5, 127; (b) T. J. Barton, L. M. Bull, W. G.
Klemperer, D. A. Loy, B. McEnaney, M. Misono, P. A. Monson, G. Pez,
G. W. Scherer, J. C. Vartuli and O. M. Yaghi, Chem. Mater., 1999, 11, 2633.
2 D. W. Breck, Zeolite Molecular Sieves, John Wiley & Sons, New York,
London, 1974, p. 784.
3 A. Dyer, An Introduction to Zeolite Molecular Sieves, John Wiley &
Sons, New York, London, 1988, p. 164.
4 W. F. Holderich, M. Hesse and F. Naumann, Angew. Chem., Int. Ed.,
1988, 27, 226.
5 Advanced Zeolite Science and Applications, Studies in Surface Science
hexanol (62 to 100%) and selectivity of C-alkylated product (80 to
93%) at a constant reaction temperature of 150 1C (Table 2,
entries 5 to 7 and 3). However, further increase in reaction time
(6) did not cause any significant effect on the conversion values
of both the catalysts (Table 2, entries 8 for AP and 8 for ZP).
Overall, the AP/ZP catalysts of the present study exhibited maximum
catalytic activity at 150 1C within a short reaction time of 4 h reveals
the promising catalytic activity of the samples.
¨
and Catalysis, ed. J. C. Jansen, M. Socker, H. G. Karge and
J. Weitkamp, Elsevier, Amsterdam, vol. 85, 1994, p. 708.
6 (a) A. Corma, Chem. Rev., 1995, 95, 559; (b) A. Corma, Chem. Rev.,
1997, 97, 2373.
7 H. E. Katz, G. Scheller, T. M. Putvinski, M. L. Schilling, W. Wilson
and C. E. D. Chidsey, Science, 1991, 254, 1485.
The AP catalyst exhibited as high as 100% selectivity (Table 2)
towards the O-alkylation product at 68% conversion values. At
similar reaction conditions, the ZP exhibited as high as 100%
conversion with shifting of selectivity towards C-alkylation (93%
selective) from the O-alkylation product. Earlier alkylation studies
on other types of catalysts such as zeolites indicated that the large
pore size of catalysts is responsible for ring alkylation whereas a
narrow pore size favors O-alkylation.33,34 Prins et al.35 mentioned
that the alkylation mainly occurred in the mesoporous parts of
zeolites due to the limitation for diffusion of bulky molecules in
the narrow pores. Moreover, the selectivity towards a particular
product was mainly directed by the acidity of the catalyst system
used.36 Based on these reports we can deduce that both meso-
porosity and external acid sites of catalysts play an important role
in activity and selectivity in such chemo-selective alkylation
reactions. The higher conversion values and C-alkylation activity
of the ZP catalyst of the present study can be ascribed to its
higher acidity in terms of both Brønsted and Lewis acid sites
(since the porosity of ZP is comparable with that of AP). The
studies, for the first time, indicate the potential applications of
these materials for selective O-alkylation (AP) and C-alkylation
(ZP) reactions. A reference experiment was also conducted in the
absence of the catalyst, using only phenol and cyclohexanol,
where no reaction was observed to proceed, which confirms the
catalytic role of AP/ZP materials. The AP/ZP materials of the
present study exhibited superior performance over those reported
in the literature (ESI,† Table S1).
8 C. Guang, H. G. Hong and T. E. Mallouk, Acc. Chem. Res., 1992, 25, 420.
9 (a) G. Freiman, P. Barboux, J. Perriere and K. Giannakopoulos, Chem.
Mater., 2007, 19, 5862; (b) D. W. Jing and L. J. Guo, J. Phys. Chem. C, 2007,
111, 13437; (c) D. P. Das and K. M. Parida, Catal. Surv. Asia, 2008, 12, 203.
10 (a) D. M. Poojary, B. Shpeizer and A. Clearfield, J. Chem. Soc., Dalton
Trans., 1995, 111; (b) S. Bruque, M. A. G. Aranda, E. R. Losilla, P. O.
Pastor and P. M. Torres, Inorg. Chem., 1995, 34, 893; (c) S. Ekambaram
and S. C Sevov, Angew. Chem., Int. Ed., 1999, 38, 372; (d) J. H. Yu and
R. R. Xu, Chem. Soc. Rev., 2006, 35, 593.
11 J. J. Jimenez, P. M. Torres, P. O. Pastor, E. R. Castellon, A. J. Lopez,
D. J. Jones and J. Roziere, Adv. Mater., 1998, 10, 812.
12 D. J. Jones, G. Aptel, M. Brandhorst, M. Jacquin, J. J. Jimenez,
A. J. Lopez, P. M. Torres, I. Piwonski, E. R. Castellon, J. Zajac and
J. Roziere, J. Mater. Chem., 2000, 10, 1957.
13 X. F. Guo, W. P. Ding, X. G. Wang and Q. J. Yan, Chem. Commun.,
2001, 709.
14 A. Bhaumik and S. Inagaki, J. Am. Chem. Soc., 2001, 123, 691.
15 S. D. Shen, B. Z. Tian, C. Z. Yu, S. H. Xie, Z. D. Zhang, B. Tu and
D. Y. Zhao, Chem. Mater., 2003, 15, 4046.
16 B. Z. Tian, X. Y. Liu, B. Tu, C. Z. Yu, J. Fan, L. M. Wang, S. H. Xie,
G. D. Stucky and D. Y. Zhao, Nat. Mater., 2003, 2, 159.
17 J. E. Haskouri, C. Guillem, J. Latorre, A. Beltran, D. Beltran and
P. Amoros, Chem. Mater., 2004, 16, 4359.
18 M. P. Kapoor, S. Inagaki and H. Yoshida, J. Phys. Chem. B, 2005,
109, 9231.
19 (a) D. H. Yu, C. Wu, Y. Kong, N. H. Xue, X. F. Guo and W. P. Ding,
J. Phys. Chem. C, 2007, 111, 14394; (b) M. Anabia, M. K. Rofouel and
S. W. Husain, Chin. J. Chem., 2006, 24, 1026.
20 Y. Wang, X. X. Wang, Z. Su, Q. Guo, Q. H. Tang, Q. H. Zhang and
H. L. Wan, Catal. Today, 2004, 93–95, 155.
21 X. K. Li, W. H. Ji, J. Zhao, Z. Zhang and C. T. Au, Appl. Catal., A, 2006,
306, 8.
22 X. K. Li, W. H. Ji, J. Zhao, Z. B. Zhang and C. T. Au, J. Catal., 2006,
238, 232.
23 W. H. J. Hogarth, J. C. D. Costa, J. Drennan and G. Q. (Max) Lu,
J. Mater. Chem., 2005, 15, 754.
24 Y. Nishiyama, S. Tanaka, H. W. Hillhouse, N. Nishiyama, Y. Egashira
and K. Ueyama, Langmuir, 2006, 22, 9469.
In summary, the present study provides a simple and novel
method for the synthesis of ordered nanoporous alumino-
phosphate and zirconiumphosphate materials possessing pro-
mising catalytic activity towards industrially important selective
alkylation of phenol for the efficient production of C-alkylation
and O-alkylation products. Further, the materials show their 25 Y. Yan, F. Zhang, Y. Meng, B. Tu and D. Zhao, Chem. Commun., 2007, 2867.
26 Z. Niu, S. Kabisatpathy, J. He, L. A. Lee, J. Rong, L. Yang, G. Sikha,
reusability with an excellent catalytic performance even after
B. N. Popov, T. S. Emrick, T. P. Russell and Q. Wang, Nano Res.,
five reaction cycles (ESI,† Table S2). The subject opens up a new
2009, 2, 474.
property of the nanoporous aluminophosphate and zirconium- 27 N. Pethan Rajan, G. S. Rao, V. Pavankumar and K. V. R. Chary, Catal.
Sci. Technol., 2014, 4, 81.
28 R. Anand, K. U. Gore and B. S. Rao, Catal. Lett., 2002, 81, 33.
29 A. Chakrabarti and M. M. Sharma, React. Polym., 1992, 17, 331.
phosphate materials as suitable catalysts for selective alkylation
reactions and has scope for improvement of the catalytic activity
through the optimization of the synthesis procedure of nano- 30 G. D. Yadav and G. S. Pathre, Ind. Eng. Chem. Res., 2007, 46, 3119.
31 Y. Zhao, J. Li, C. Li, K. Yin, D. Ye and X. Ji, Green Chem., 2010, 12, 1370.
32 A. M. Ravikovich, J. Chem. Soc., Chem. Commun., 1991, 3, 9–64.
33 G. D. Yadav and P. Kumar, Appl. Catal., A, 2005, 286, 61.
porous aluminophosphate and zirconiumphosphate for expand-
ing their applications to other selective alkylation reactions.
We acknowledge the CSIR for the research funding of the 34 R. Anand, T. Daniel, R. J. Lahoti, K. V. Srinivasan and B. S. Rao,
Catal. Lett., 2002, 81, 241.
35 X. Li, R. Prins and J. A. Bokhoven, J. Catal., 2009, 262, 257.
36 N. Candu, M. Florea, S. M. Coman and V. I. Parvulescu, Appl. Catal., A,
project under 12th FYP. PS acknowledges CSIR, New Delhi for
awarding a fellowship. We are thankful to XRD, IR, SEM and
GC-Mass groups at IIP for analysis.
2011, 393, 206.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 6232--6235 | 6235