Paper
Photochemical & Photobiological Sciences
4
5
6
I. V. Khudyakov, Fast photopolymerization of acrylate coat- 16 N. B. Tien, N. P. Buu-Hoï and N. D. Xuong, Tuberculostatic
ings: Achievements and problems, Prog. Org. Coat., 2018,
21, 151–159.
N-arylglycines and derivatives, J. Org. Chem., 1958, 23,
186–188.
1
J. V. Crivello and E. Reichmanis, Photopolymer materials 17 S. Ikeda and S. Murata, Photolysis of N-phenylglycines sen-
and processes for advanced technologies, Chem. Mater.,
014, 26(1), 533–548.
Y. Fuchs, O. Soppera and K. Haupt, Photopolymerization
and photostructuring of molecularly imprinted polymers
sitized by polycyclic aromatic hydrocarbons effects of sensi-
tizers and substituent groups and application to photo-
polymerization, J. Photochem. Photobiol., A, 2002, 149,
121–130.
2
for sensor applications—A review, Anal. Chim. Acta, 2012, 18 J. Jakubiak, X. Allonas, J. P. Fouassier, A. Sionkowska,
7
17, 7–20.
N. A. Chartrain, C. B. Williams and A. R. Whittington,
review on fabricating tissue scaffolds using vat
photopolymerization, Acta Biomater., 2018, 74,
0–111.
E. Andrzejewska, L. Å. Linden and J. F. Rabek,
Camphorquinone–amines photoinitating systems for the
initiation of free radical polymerization, Polymer, 2003, 44,
5219–5226.
7
8
A
9
19 (a) J. P. Fouassier and J. Lalevée, Three-component photoi-
nitiating systems: towards innovative tailor made high per-
formance combinations, RSC Adv., 2012, 2, 2621–2629;
(b) X. Allonas, J. P. Fouassier, H. Obeid, M. Kaji and
Y. Ichihashi, Mechanistic analysis of photopolymerization
reactions in the presence of HABI/Hydrogen donor photo-
initiator system, J. Photopolym. Sci. Technol., 2004, 17,
35–40.
P. Xiao, J. Zhang, F. Dumur, M. A. Tehfe, F. Morlet-Savary,
B. Graff, D. Gigmes, J. P. Fouassier and J. Lalevée, Visible
light sensitive photoinitiating systems: Recent progress in
cationic and radical photopolymerization reactions under
soft conditions, Prog. Polym. Sci., 2015, 41, 32–66.
9
(a) H. J. Hageman, Photoinitiators for free radical polymer-
ization, Prog. Org. Coat., 1985, 13, 123–150;
(
b) H. F. Gruber, Photoinitiators for free radical polymeriz- 20 J. Zhang, J. Lalevée, X. Mou, F. Morlet-Savary, B. Graff and
ation, Prog. Polym. Sci., 1992, 17, 953–1044;
c) R. S. Davidson, Polymeric and polymerisable free radical
P. Xiao, N-Phenylglycine as a versatile photoinitiator under
near-UV LED, Macromolecules, 2018, 51, 3767–3773.
(
photoinitiators, J. Photochem. Photobiol., A., 1993, 69, 263– 21 A. A. Mousawi, P. Garra, M. Schmitt, J. Toufaily, T. Hamieh,
2
75.
B. Graff, J. P. Fouassier, F. Dumur and J. Lalevée,
3-Hydroxyflavone and N-phenylglycine in high performance
photoinitiating systems for 3D printing and photo-
1
0 M. El-Roz, J. Lalevée, X. Allonas and J. P. Fouassier,
Mechanistic Investigation of the Silane, Germane, and
Stannane Behavior When Incorporated in Type I and Type
II Photoinitiators of Polymerization in Aerated Media,
Macromolecules, 2009, 42(22), 8725–8732.
1 J. Lalevée, Photopolymerisation Initiating Systems, Polymer
Chemistry Series, 2018, DOI: 10.1039/9781788013307.
2 T. F. Haller Jr. and R. C. Stumpf, Institute of Printed
Circuits, Evanston, IL, Proceedings of the September Fall
Meeting, Los Angeles, 1968.
3 X. Z. Qin, A. Liu, A. D. Trifunac and V. V. Krongauz,
Photodissociation of hexaarylbiimidazole. 1. Triplet-state
formation, J. Phys. Chem., 1991, 95(15), 5822–5826.
4 (a) D. Ahn, S. R. Zavada and T. F. Scott, Rapid, photo-
mediated healing of hexaarylbiimidazole-based covalently
composites
synthesis,
Macromolecules,
2018,
51,
4633–4641.
22 Y. C. Chen and Y. T. Kuo, Photocuring kinetic studies of
TMPTMA monomer by Type II photoinitiators of different
weight ratios of 2-chlorohexaaryl biimidazole (o-Cl-HABI)
and N-phenyl glycine (NPG), J. Photopolym. Sci. Technol.,
2018, 31, 487–492.
23 N. S. Rai, B. Kalluraya, B. Lingappa, S. Shenoy and
V. G. Puranic, Convenient access to 1,3,4-trisubstituted pyr-
azoles carrying 5-nitrothiophene moiety via 1,3-dipolar
cycloaddition of sydnones with acetylenic ketones and
their antimicrobial evaluation, Eur. J. Med. Chem., 2008, 43,
1715–1720.
1
1
1
1
cross-linked gels, Chem. Mater., 2017, 29(16), 7023–7031; 24 D. Kunwong, N. Sumanochitraporn and S. Kaewpirom,
(
b) W. L. Gong, G. F. Zhang, C. Li, M. P. Aldred and
M. Q. Zhu, Design, synthesis and optical properties of
green fluorescent photoswitchable hexaarylbiimid-
Curing behavior of a UV-curable coating based on urethane
acrylate oligomer: the influence of reactive monomers,
Songklanakarin J. Sci. Technol., 2011, 33, 201–207.
a
azole (HABI) with non-conjugated design, RSC Adv., 2013, 25 (a) S. Uesato, Y. Hashimoto, M. Nishino, Y. Nagaoka and
3
, 9167–9170; (c) D. Ahn, S. S. Sathe, B. H. Clarkson and
H. Kuwajima, N-Substituted Hydroxyureas as Urease
Inhibitors, Chem. Pharm. Bull., 2002, 50, 1280–1282;
(b) J. Oberski, R. Festag, C. Schmidt, G. Liissem,
J. H. Wendorff, A. Greiner, M. Hopmeier and F. Motamedi,
Synthesis and structure-property relationships of processa-
ble liquid crystalline polymers with arylenevinylene seg-
ments in the main chain for light-emitting applications,
Macromolecules, 1995, 28, 8676–8682.
T. F. Scott, Hexaarylbiimidazoles as visible light
thiol–ene photoinitiators, Dent. Mater., 2015, 31, 1075–
1
089.
1
5 Z. Kucybala, M. Pietrazk, J. Paczkowski, L. Å. Linden and
J. F. Rabek, Kinetic studies of a new photoinitiator hybrid
system based on camphorquinone-N-phenylglicyne deriva-
tives for laser polymerization of dental restorative and
stereolithographic (3D) formulations, Polymer, 1996, 37, 26 P. Simamora and S. H. Yalkowsky, Group contribution
4
585–4591.
methods for predicting the melting points and boiling
196 | Photochem. Photobiol. Sci., 2019, 18, 190–197
This journal is © The Royal Society of Chemistry and Owner Societies 2019