Chemistry of Materials
Article
the emitter into the host crystal, which is a kinetic equilibrium
maximized when both components are similarly sized and the
emitter is present at 1−10 wt %. Replacing or removing the
halogen on the emitter facilitates sequential 5−30 nm steps in
green emission region, allowing the designer to fine-tune the
emission spectrum with minimal change to the chemical
structure. These findings elucidate the complex optical and
solid state behavior these materials exhibit and illustrate the
extreme influence that material preparation has on their
performance.
(19) Climent, C.; Alemany, P.; Lee, D.; Kim, J.; Casanova, D. J. Phys.
Chem. A 2014, 118, 6914−6921.
(
(
̈
20) Jakle, F. Chem. Rev. 2010, 110, 3985−4022.
21) Zhang, G.; Fiore, G. L.; St. Clair, T. L.; Fraser, C. L.
Macromolecules 2009, 42, 3162−3169.
22) Zhang, G.; Chen, J.; Payne, S. J.; Kooi, S. E.; Demas, J. N.;
Fraser, C. L. J. Am. Chem. Soc. 2007, 129, 8942−8943.
23) Chaudhuri, D.; Wettach, H.; van Schooten, K. J.; Liu, S.;
Sigmund, E.; Hoger, S.; Lupton, J. M. Angew. Chem., Int. Ed. 2010, 49,
7714−7717.
(
(
̈
(24) Gao, L.; Peay, M. A.; Partyka, D. V.; Updegraff, J. B.; Teets, T.
S.; Esswein, A. J.; Zeller, M.; Hunter, A. D.; Gray, T. G.
Organometallics 2009, 28, 5669−5681.
ASSOCIATED CONTENT
Supporting Information
■
(25) Burress, C. N.; Bodine, M. I.; Elbjeirami, O.; Reibenspies, J. H.;
*
S
Omary, M. A.; Gabbai, F. P. Inorg. Chem. 2007, 46, 1388−1395.
(26) Jayaraj, N.; Maddipatla, M. V. S. N.; Prabhakar, R.; Jockusch, S.;
Turro, N. J.; Ramamurthy, V. J. Phys. Chem. B 2010, 114, 14320−
1
1
4328.
AUTHOR INFORMATION
(27) Evans, R. C.; Douglas, P.; Winscom, C. J. J. Fluoresc. 2009, 19,
■
69−177.
(
̈
28) Kuzmanich, G.; Simoncelli, S.; Gard, M. N.; Spanig, F.; Hender
*
Henderson, B. L.; Guldi, D. M.; Garcia-Garibay, M. A. J. Am. Chem.
Soc. 2011, 133, 17296−17306.
Author Contributions
⊥
These authors contributed equally to this work.
(29) Yuan, W. Z.; Shen, X. Y.; Zhao, H.; Lam, J. W. Y.; Tang, L.; Lu,
P.; Wang, C.; Liu, Y.; Wang, Z.; Zheng, Q.; Sun, J. Z.; Ma, Y.; Tang, B.
Z. J. Phys. Chem. C 2010, 114, 6090−6099.
Notes
The authors declare no competing financial interest.
(
30) Kabe, R.; Lynch, V. M.; Anzenbacher, P., Jr. CrystEngComm
2
011, 13, 5423−5427.
ACKNOWLEDGMENTS
■
(31) Shen, Q. J.; Wei, H. Q.; Zou, W. S.; Sun, H. L.; Jin, W. J.
This work was partly supported by the National Science
Foundation (DMR Career 0644864) and Samsung GRO grant.
D.L. was partly supported by a fellowship from LG Chemicals.
CrystEngComm 2012, 14, 1010−1015.
̌ ̌ ́
(32) Yan, D.; Delori, A.; Lloyd, G. O.; Friscic, T.; Day, G. M.; Jones,
W.; Lu, J.; Wei, M.; Evans, D. G.; Duan, X. Angew. Chem., Int. Ed.
011, 50, 12483−12486.
33) Li, J.; Takaishi, S.; Fujinuma, N.; Endo, K.; Yamashita, M.;
2
(
REFERENCES
■
Matsuzaki, H.; Okamoto, H.; Sawabe, K.; Takenobu, T.; Iwasa, Y. J.
Mater. Chem. 2011, 21, 17662−17666.
(
(
1) Xiao, L.; Chen, L.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J.
Adv. Mater. 2011, 23, 926−952.
34) Maity, S. K.; Bera, S.; Paikar, P.; Pramanik, A.; Haldar, D. Chem.
(
2) Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer,
T. Coord. Chem. Rev. 2011, 255, 2622−2652.
3) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.;
Lussem, B.; Leo, K. Nature 2009, 459, 234−239.
4) Evans, R. C.; Douglas, P.; Winscom, C. J. Coord. Chem. Rev. 2006,
50, 2093−2126.
5) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thomspon, M. E.;
Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4−6.
6) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.;
Commun. 2013, 49, 9051−9053.
35) Martinez-Martinez, V.; Llano, R. S.; Furukawa, S.; Takashima,
Y.; Arbeloa, I. L.; Kitagawa, S. ChemPhysChem 2014, 15, 2517−2521.
36) Wang, H.; Hu, R. X.; Pang, X.; Gao, H. Y.; Jin, W. J.
CrystEngComm 2014, 16, 7942−7948.
37) Voth, A. R.; Hays, F. A.; Ho, P. S. Proc. Natl. Acad. Sci. U. S. A.
007, 104, 6188−6193.
38) Politzer, P.; Lane, P.; Concha, M. C.; Ma, Y.; Murray, J. S. J. Mol.
(
(
̈
(
(
2
(
(
2
(
(
Model. 2007, 13, 305−311.
(
(
Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151−154.
7) Wong, W.-Y.; Ho, C.-L. Acc. Chem. Res. 2010, 43, 1246−1256.
8) Dennler, G.; Scharber, M. C.; Brabec, C. J. Adv. Mater. 2009, 21,
39) Hassel, O. Science 1970, 170, 497−502.
40) Turro, N. J. Modern Molecular Photochemistry; University
(
(
1
(
(
3
(
Science Books: 1991; pp 125−126.
41) Kearns, D. R.; Case, W. A. J. Am. Chem. Soc. 1966, 88, 5087−
097.
323−1338.
(
5
(
9) Shao, Y.; Yang, Y. Adv. Mater. 2005, 17, 2841−2844.
10) Ma, X.; Cao, J.; Wang, Q.; Tian, H. Chem. Commun. 2011, 47,
42) Fischer, M.; Georges, J. Chem. Phys. Lett. 1996, 260, 115−118.
559−3561.
11) Zhang, G.; Palmer, G. M.; Dewhirst, M. W.; Fraser, C. L. Nat.
Mater. 2009, 8, 747−751.
12) Soutar, I.; Swanson, L.; Adamson, P. G.; Flint, N. J.
Macromolecules 2009, 42, 9153−9160.
13) Lammers, I.; Buijs, J.; van der Zwan, G.; Arinese, F.; Gooijer, C.
Anal. Chem. 2009, 81, 6226−6233.
14) Bolton, O.; Lee, K.; Kim, H.-J.; Lin, K. Y.; Kim, J. Nat. Chem.
011, 3, 205−210.
15) Lee, D.; Bolton, O.; Kim, B. C.; Youk, J. H.; Takayama, S.; Kim,
J. J. Am. Chem. Soc. 2013, 135, 6325−6329.
16) Hirata, S.; Totani, K.; Zhang, J.; Yamashita, T.; Kaji, H.; Marder,
S. R.; Watanabe, T.; Adachi, C. Adv. Funct. Mater. 2013, 23, 3386−
397.
17) Kwon, M. S.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Angew. Chem., Int.
Ed. 2014, 53, 11177−11181 DOI: 10.1002/anie.201404490.
18) Xu, J.; Takai, A.; Kobayashi, Y.; Takeuchi, M. Chem. Commun.
013, 49, 8447−8449.
(
(
(
2
(
(
3
(
(
2
6
649
dx.doi.org/10.1021/cm503678r | Chem. Mater. 2014, 26, 6644−6649