7
858
J . Org. Chem. 2000, 65, 7858-7864
Am id a tion of Un fu n ction a lized Hyd r oca r bon s Ca ta lyzed by
Ru th en iu m Cyclic Am in e or Bip yr id in e Com p lexes
Sze-Man Au, J ie-Sheng Huang, Chi-Ming Che,* and Wing-Yiu Yu
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
Received J une 8, 2000
Selective amidation of simple hydrocarbons with pre-isolated and in-situ formed iminoiodanes
III
catalyzed by ruthenium complexes [Ru (Me
1
3
tacn)(CF
bpy) Cl
3
CO
] (3, 6,6′-Cl
2
)
3
‚H
2
O] (2b, Me
3
tacn ) N,N′,N′′-trimethyl-
II
,4,7-triazacyclononane) and cis-[Ru (6,6′-Cl
2
2
2
2
bpy ) 6,6′-dichloro-2,2′-bipyridine)
was investigated. With PhIdNTs as nitrogen source, both catalysts efficiently promote the amidation
of adamantane, cyclohexene, ethylbenzene, cumene, indan, tetralin, and diphenylmethane to afford
N-substituted sulfonamides in 80-93% yields with high selectivity. Competitive amidations of para-
substituted ethylbenzenes and kinetic isotope effect for the amidation of cyclohexene/cyclohexene-
d
10 suggest that the amidation processes probably proceed via the hydrogen abstraction by a reactive
RudNTs species to form a carboradical intermediate. The amidation with PhI(OAc) /TsNH gave
results comparable to those obtained with PhIdNTs. Extension of the “PhI(OAc) /TsNH + catalyst
b or 3” protocol to MeSO NH and PhCONH with ethylbenzene as substrate produced the
corresponding N-substituted amides in up to 89% yield.
2
2
2
2
2
2
2
2
6
7,8
In tr od u ction
The selective amination of unfunctionalized hydrocar-
ium catalysts” have been achieved. These putative
sulfonylimido group transfer processes provide a unique
approach to N-substituted sulfonamides that could be
bons in the presence of metal catalysts constitutes an
9
10
desulfonylated by hydrolytic or reductive methods to
amines or used directly as well-protected amines for
further functionalizations.
Our quest for ruthenium amination or amidation
catalysts was based on the well-documented oxidation
1
appealing route for the synthesis of amines. However,
so far only a few such aminations are known, including
the allylic amination of alkenes with “ArNHOH + iron
2
or molybdenum catalysts” and “ArNO
2
/CO + ruthenium
3
11
or iron catalysts”, which are proposed to proceed via an
ene-like reaction featuring alkene double bond trans-
chemistry of high-valent ruthenium-oxo complexes. We
envisaged that the ruthenium-imido analogues should
also exhibit rich oxidation chemistry that has potential
application in the C-H bond functionalization. Upon
2
,3b
position
or involve a metal-alkene complex as active
species.3 The metal-mediated direct amination of hydro-
carbons via alkyl- or arylimido insertion into saturated
C-H bonds, a nitrogen analogue of hydroxylation via oxo
group transfer process, would serve as another attractive
a
1
2
isolation of several imido ruthenium(VI) porphyrins, we
found that the bis(tosylimido) complexes 1a ,b can under-
go stoichiometric amidation with a variety of hydrocar-
4
12b,d
methodology but as yet remains unrealized. Notably,
bons.
In particular, the amidation of 2-ethylnaphtha-
direct amidations of hydrocarbons with “PhIdNTs +
lene by complex 1b with a chiral porphyrinato ligand
5
manganese porphyrin catalysts” or “PhIdNNs + dirhod-
(5) (a) Breslow, R.; Gellman, S. H. J . Chem. Soc., Chem. Commun.
1
982, 1400. (b) Breslow, R.; Gellman, S. H. J . Am. Chem. Soc. 1983,
(
1) (a) Roundhill, D. M. Chem. Rev. 1992, 92, 1. (b) M u¨ ller, T. E.;
105, 6728. (c) Mahy, J . P.; Bedi, G.; Battioni, P.; Mansuy, D.
Tetrahedron Lett. 1988, 29, 1927. (d) Mahy, J . P.; Bedi, G.; Battioni,
P.; Mansuy, D. New J . Chem. 1989, 13, 651. (e) Yang, J .; Weinberg,
R.; Breslow, R. Chem. Commun. 2000, 531.
Beller, M. Chem. Rev. 1998, 98, 675. (c) J ohannsen, M.; J φrgensen, K.
A. Chem. Rev. 1998, 98, 1689.
(
2) (a) Srivastava, A.; Ma, Y.-A.; Pankayatselvan, R.; Dinges, W.;
Nicholas, K. M. J . Chem. Soc., Chem. Commun. 1992, 853. (b)
J ohannsen, M.; J φrgensen, K. A. J . Org. Chem. 1994, 59, 214. (c)
Srivastava, R. S.; Nicholas, K. M. Tetrahedron Lett. 1994, 35, 8739.
(6) (a) M u¨ ller, P.; Baud, C.; J acquier, Y.; Moran, M.; N a¨ geli, I. J .
Phys. Org. Chem. 1996, 9, 341. (b) N a¨ geli, I.; Baud, C.; Bernardinelli,
G.; J acquier, Y.; Moran, M.; M u¨ ller, P. Hel. Chim. Acta 1997, 80, 1087.
(7) For related amidation with chloramine-T trihydrate (TsNClNa‚
(
d) Srivastava, R. S.; Nicholas, K. M. Chem. Commun. 1996, 2335.
(3) (a) Cenini, S.; Ragaini, F.; Tollari, S.; Paone, D. J . Am. Chem.
2
3H O) catalyzed by copper complex, see: Albone, D. P.; Aujla, P. S.;
Soc. 1996, 118, 11964. (b) Srivastava, R. S.; Nicholas, K. M. Chem.
Commun. 1998, 2705.
Taylor, P. C.; Challenger, S.; Derrick, A. M. J . Org. Chem. 1998, 63,
9569.
t
(4) Some zirconium bisamides, Cp
2
Zr(NHR)
2
, are known to catalyze
(8) For related amidation with alkyl peroxycarbamate (Bu OO-
the hydroamination of alkynes and allene to form enamines and imines
via zirconium alkyl- or arylimido intermediates, see for example: (a)
Walsh, P. J .; Baranger, A. M.; Bergman, R. G. J . Am. Chem. Soc. 1992,
CONHTs) catalyzed by copper complexes, see: Kohmura, Y.; Kawasaki,
K.-i.; Katsuki, T. Synlett 1997, 1456.
(9) Roemmele, R. C.; Rapoport, H. J . Org. Chem. 1988, 53, 2367.
(10) Fleming, I.; Frackenpohl, J .; Ila, H. J . Chem. Soc., Perkin Trans.
1 1998, 1229, and many references therein.
1
14, 1708. (b) Baranger, A. M.; Walsh, P. J .; Bergman, R. G. J . Am.
Chem. Soc. 1993, 115, 2753. These processes are characteristic of the
[
2 + 2] cycloaddition of ZrdNR multiple bonds with CtC or CdC
(11) For reviews, see: (a) Griffith, W. P. Chem. Soc. Rev. 1992, 21,
179. (b) Che, C.-M.; Yam, V. W. W. Adv. Inorg. Chem. 1992, 39, 233.
(12) (a) Huang, J . S.; Che, C.-M.; Poon, C.-K. J . Chem. Soc., Chem.
Commun. 1992, 161. (b) Au, S.-M.; Huang, J .-S.; Yu, W.-Y.; Fung, W.-
H.; Che, C.-M. J . Am. Chem. Soc. 1999, 121, 9120. (c) Huang, J .-S.;
Sun, X.-R.; Leung, S. K.-Y.; Cheung, K.-K.; Che, C.-M. Chem. Eur. J .
2000, 6, 334. (d) Zhou, X.-G.; Yu, X.-Q.; Huang, J .-S.; Che, C.-M. Chem.
Commun. 1999, 2377.
bonds, and result in a reduction of the alkynes or allene, unlike the
direct insertion of imido groups into saturated C-H bonds. Stoichio-
metric C-H bond activation of an alkane or arene can be effected by
t
transient TidNSiBu
3
species via the 1,2-addition of the C-H bond
across the TidN multiple bond (Cummins, C. C.; Baxter, S. M.;
Wolczanski, P. T. J . Am. Chem. Soc. 1988, 110, 8731) but such a
reaction does not result in imido group transfer to the hydrocarbon.
1
0.1021/jo000881s CCC: $19.00 © 2000 American Chemical Society
Published on Web 10/21/2000