A R T I C L E S
Cook et al.
Rh, Mo, Ru,11 W ) generally afford the branched substitution
products 4 preferentially. This change in the regioselectivity
with most metals other than palladium reflects the change in
the metal-allyl structure toward the enyl complex 2 where
electronic control of the selectivity predominates. The control
of the Pd-catalyzed allylic substitution reaction to favor branched
products remains an arduous challenge. Thus, new paradigms
for directing regioselectivity are required.
9
10
12
Scheme 2
During the course of our investigation of the dynamic
diastereoselective allylic substitution reaction of 5-vinyloxazo-
lidinones with nitrogen nucleophiles (phthalimide), unusually
high regioselectivity favoring addition to the internal allyl carbon
13
was encountered. The optimized reaction is described in
Scheme 2. A mixture of oxazolidinone diastereomers 5, readily
obtained from L-phenylalanine, was treated with a Pd catalyst
in the presence of phthalimide. A catalytic amount of potassium
phthalimide was introduced to facilitate reduction of the Pd(II)
precatalyst to the Pd(0) catalyst. Extremely high selectivity for
the branched (1,2-diamine) product 6 was obtained (95:5). The
application of chiral ligands (BINAP) with the chiral substrate
provided the best diastereo- and regioselectivity. Interestingly,
1
6
was obtained as a single diastereomer ( H NMR), and the
chirality of the ligand had no influence on the stereoinduction.
The same syn-diastereomer was produced whether the (R) or
the (S) ligand was employed. However, a pronounced matched
and mismatched effect was observed on the regioselectivity ((R)-
BINAP, 95:5; (S)-BINAP, 75:25).
Scheme 3
The high levels of regioselectivity for the branched product
observed in the allylic substitution of 5-vinyloxazolidinones are
extremely rare among palladium-catalyzed allylic substitution
(
5) (a) Krafft, M. E.; Sugiura, M.; Abboud, K. A. J. Am. Chem. Soc. 2001,
1
23, 9174. (b) Itami, K.; Koike, T.; Yoshida, J.-I. J. Am. Chem. Soc. 2001,
23, 6957. (c) Ma, S.; Zhao, S. J. Am. Chem. Soc. 2001, 123, 5578. (d)
1
Krafft, M. E.; Wilson, A. M.; Fu, Z.; Procter, M. J.; Dasse, O. A. J. Org.
Chem. 1998, 63, 1748. (e) Farthing, C. N.; Kocovsky, P. J. Am. Chem.
Soc. 1998, 120, 6661. (f) Krafft, M. E.; Fu, Z.; Procter, M. J.; Wilson, A.
M.; Dasse, O. A.; Hirosawa, C. Pure Appl. Chem. 1998, 70, 1083.
6) (a) Pr e´ t oˆ t, R.; Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37, 323. (b)
Steinhagen, H.; Reggelin, M.; Helmchen, G. Angew. Chem., Int. Ed. Engl.
(
1
997, 36, 2108. (c) Blacker, A. J.; Clarke, M. L.; Loft, M. S.; Williams, J.
M. J. Org. Lett. 1999, 1, 1969.
(
7) (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 4545. (b)
Trost, B. M.; Bunt, R. C.; Lemoine, R. C.; Calkins, T. L. J. Am. Chem.
Soc. 2000, 122, 5968. (c) Trost, B. M.; Ariza, X. J. Am. Chem. Soc. 1999,
1
21, 10727. (d) Hayashi, T.; Kawatsura, M.; Uozumi, Y. J. Am. Chem.
Soc. 1998, 120, 1681. (e) Hayashi, T.; Kawatsura, M.; Uozumi, Y. Chem.
Commun. 1997, 561. (f) Trost, B. M.; Krische, M. J.; Radinov, R.; Zanoni,
G. J. Am. Chem. Soc. 1996, 118, 6297. (g) Hayashi, T.; Kishi, K.;
Yamamoro, A.; Ho, Y. Tetrahedron Lett. 1990, 31, 1743.
8) (a) Takeuchi, R.; Tanabe, K. Angew. Chem., Int. Ed. 2000, 39, 1975. (b)
Takeuchi, R.; Shiga, N. Org. Lett. 1999, 1, 265. (c) Bartels, B.; Helmchen,
G. Chem. Commun. 1999, 741. (d) Fuji, K.; Kinoshita, N.; Tanaka, K.;
Kawabata, T. Chem. Commun. 1999, 2289. (e) Takeuchi, R.; Kashio, M.
Angew. Chem., Int. Ed. Engl. 1997, 36, 263.
(
(
9) (a) Evans, P. A.; Kennedy, L. J. J. Am. Chem. Soc. 2001, 123, 1234. (b)
Evans, P. A.; Robinson, J. E. J. Am. Chem. Soc. 2001, 123, 4609. (c) Evans,
P. A.; Leahy, D. K. J. Am. Chem. Soc. 2000, 122, 5012. (d) Fagnou, K.;
Lautens, M. Org. Lett. 2000, 2, 2319. (e) Evans, P. A.; Kennedy, L. J.
Org. Lett. 2000, 2, 2213. (f) Evans, P. A.; Robinson, J. E.; Nelson, J. D.
J. Am. Chem. Soc. 1999, 121, 6761. (g) Evans, P. A.; Robinson, J. E. Org.
Lett. 1999, 1, 1929. (h) Evans, P. A.; Nelson, J. D. Tetrahedron Lett. 1998,
3
9, 1725. (i) Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120,
581.
reactions, and this result prompted us to investigate the origin
of the unusual selectivity. Because the reaction presumably
proceeds through a zwitterionic complex, we hypothesized that
the amide moiety may be somehow directing the nucleophile
5
(
10) (a) Trost, B. M.; Dogra, K. J. Am. Chem. Soc. 2002, 124, 7256. (b) Belda,
O.; Kaiser, N.-F.; Bremberg, U.; Larhed, M.; Hallberg, A.; Moberg, C. J.
Org. Chem. 2000, 65, 5868. (c) Glorius, G.; Pfaltz, A. Org. Lett. 1999, 1,
1
41. (d) Trost, B. M.; Hildbrand, S.; Dogra, K. J. Am. Chem. Soc. 1999,
21, 10416. (e) Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104. (f) Trost,
1
(Scheme 3). As the amide is the only base in the reaction to
B. M.; Lautens, M. J. Am. Chem. Soc. 1987, 109, 1469.
(
11) Zhang, S.; Mitsudo, T.; Kondo, T.; Watanabe, Y. J. Organomet. Chem.
deprotonate the nucleophile, we envisioned a “proximity effect”
might be operative. That is, once the nucleophile is deprotonated,
it reacts at the nearest electrophilic carbon (8 f 9 f 6) before
it diffuses away from the complex to react at the less substituted
allyl carbon (8 f 9 f 7). Another hypothesis is that after proton
1
993, 450, 197.
(
12) (a) Lloyd-Jones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1995, 34,
4
62. (b) Trost, B. M.; Tometzki, G. B.; Hung, M. H. J. Am. Chem. Soc.
987, 109, 9, 2176.
1
(
13) Cook, G. R.; Shanker, P. S.; Pararajasingham, K. Angew. Chem., Int. Ed.
1
999, 38, 110.
5116 J. AM. CHEM. SOC.
9
VOL. 125, NO. 17, 2003