Paper
RSC Advances
visible-light photocatalytic activity well demonstrated. The use 19 M. Nieto-Suarez, G. Palmisano, M. L. Ferrer, M. C. Gutierrez,
of air as oxygen source, visible light as energy source, ethyl
acetate as a safe reaction media as well as reusing of catalyst
S. Yurdakal, V. Augugliaro, M. Pagliaro and F. del Monte, J.
Mater. Chem., 2009, 19, 2070–2075.
with very low catalyst loading providing the scalability of the 20 J. G. Yu, L. J. Zhang, B. Cheng and Y. R. Su, J. Phys. Chem. C,
methods are the strengths of the presented work. Thus, our 2007, 111, 10582–10589.
methods are cost effective which enable the industrially 21 H. Zhou, T. X. Fan and D. Zhang, ChemCatChem, 2011, 3,
important reactions to be carried out efficiently under aerobic
513–528.
and practically attainable conditions.
22 H. Zhou, X. F. Li, T. X. Fan, F. E. Osterloh, J. Ding,
E. M. Sabio, D. Zhang and Q. X. Guo, Adv. Mater., 2010, 22,
9
51–956.
Acknowledgements
2
3 J. Sarkar, V. T. John, J. He, C. Brooks, D. Gandhi, A. Nunes,
G. Ramanath and A. Bose, Chem. Mater., 2008, 20, 5301–
5306.
Support for this work by Research Council of University of Bir-
jand is highly appreciated.
24 V. H. Houlding and M. Gratzel, J. Am. Chem. Soc., 1983, 105,
5
695–5696.
References
2
5 G. Zhang, G. Kim and W. Choi, Energy Environ. Sci., 2014, 7,
954–966.
26 T.-Y. Lai and W.-C. Lee, J. Photochem. Photobiol., A, 2009, 204,
1
2
3
4
5
6
7
8
K. Demeestere, J. Dewulf and H. V. Langenhove, Crit. Rev.
Environ. Sci. Technol., 2007, 37, 489–538.
K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue
and K. Domen, Nature, 200, 440, 295.
148–153.
27 M. O. Oyewumi and R. J. Mumper, Int. J. Pharm., 2003, 251,
85–97.
28 S. Wang and P. S. Low, J. Controlled Release, 1998, 53, 39–48.
H. I. Karunadasa, C. J. Chang and J. R. Long, Nature, 2010,
464, 1329–1333.
S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, ACS 29 A. P. Xagas, M. C. Bernard, A. Hugot-Le Goff, N. Spyrellis,
Nano, 2010, 4, 1259–1278.
Z. Loizos and P. Falaras, J. Photochem. Photobiol., A, 2000,
132, 115–120.
30 W. Macyk, K. Szaciłowski, G. Stochel, M. Buchalska,
J. Kuncewicz and P. Łabuz, Coord. Chem. Rev., 2010, 254,
2687–2701.
J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius and
B. M. Weckhuysen, Chem. Rev., 2010, 110, 3552–3599.
A. Fujishima, X. T. Zhang and D. A. Tryk, Surf. Sci. Rep., 2008,
63, 515–582.
M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, 31 J. Haber and T. Mlodnicka, J. Mol. Catal., 1992, 74, 131–141.
Renewable Sustainable Energy Rev., 2007, 11, 401–425.
F. Amano, O. O. Prieto-Mahaney, Y. Terada, T. Yasumoto,
32 D. Balcells, E. Clot and O. Eisenstein, Chem. Rev., 2010, 110,
749–823.
T. Shibayama and B. Ohtani, Chem. Mater., 2009, 21, 2601– 33 A. S. Goldman and K. I. Goldberg, Activation and
2
603.
Functionalization of C–H Bonds, ACS Symposium Series
885, ACS, Washington, DC, 2004, pp. 1–45.
34 A. Gunay and K. H. Theopold, Chem. Rev., 2010, 110, 1060–
1081.
9
X. G. Han, X. Wang, S. F. Xie, Q. Kuang, J. J. Ouyang, Z. X. Xie
and L. S. Zheng, RSC Adv., 2012, 2, 3251–3253.
0 J. M. D. E. Silva, M. Pastorello, M. Strauss, C. M. Maroneze,
1
F. A. Sigoli, Y. Gushikem and I. O. Mazali, RSC Adv., 2012, 35 F. Cardona and C. Parmeggiani, Transition Metal Catalysis in
2
, 5390–5397.
1 S. Bingham and W. A. Daoud, J. Mater. Chem., 2011, 21,
041–2050.
Aerobic Alcohol Oxidation, The Royal Society of Chemistry,
2015.
36 C. Parmeggiani and F. Cardona, Green Chem., 2012, 14, 547–
564.
37 F. Rajabi, R. Luque, J. H. Clark, B. Karimi and
D. J. MacQuarrie, Catal. Commun., 2011, 12, 510–513.
1
1
2
2 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga,
Science, 2001, 293, 269–271.
3 J. Virkutyte and R. S. Varma, RSC Adv., 2012, 2, 1533–1539.
1
1
4 S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, 38 M. Jafarpour, A. Rezaeifard, V. Yasinzadeh and H. Kargar,
D. W. Bahnemann and V. Murugesan, Water Res., 2004, 38,
001–3008.
5 S. Ko, C. K. Banerjee and J. Sankar, Compos. Eng., 2011, 42,
79–583.
6 M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem,
RSC Adv., 2015, 5, 38460–38469.
39 M. Jafarpour, H. Kargar and A. Rezaeifard, RSC Adv., 2016, 6,
25034–25046.
40 M. Jafarpour, A. Rezaeifard, M. Ghahramaninezhad and
T. Tabibi, New J. Chem., 2013, 37, 2087–2095.
3
1
1
5
J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca and 41 H. Peng, X. Wang, G. Li, H. Pang and X. Chen, Mater. Lett.,
H. Idriss, Nat. Chem., 2011, 3, 489–492.
2010, 64, 1898–1901.
7 W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, 42 M. Ye, Z. Chen, W. Wang, L. Zhen and J. Shen, Mater. Lett.,
P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, 2008, 62, 3404–3406.
M. K. Nazeeruddin, Q. Wang, M. Gratzel and D. L. Officer, 43 S. C. Pillai, P. P. Periyat, R. George, D. E. McCormack,
1
1
J. Phys. Chem. C, 2007, 111, 11760–11762.
M. K. Seery, H. Hayden, J. Colreavy, D. Corr and
8 W. Zhao, Y. L. Sun and F. N. Castellano, J. Am. Chem. Soc.,
S. J. Hinder, J. Phys. Chem. C, 2007, 111, 1605–1611.
2008, 130, 12566–12567.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 54649–54660 | 54659