D
Synlett
D. Anthony, T. Diao
Synpacts
We performed control experiments to investigate the
possible in situ generation of an organozinc reagent, which
could afford the difunctionalized alkene as in redox-neutral
strategies. When phenylzinc chloride was used in place of
bromobenzene in the absence of zinc powder, no diaryla-
tion product was observed. This experiment suggests that
direct oxidative addition of zinc to the aryl bromide does
not enable the reaction.
Funding Information
This work was supported by the National Science Foundation (CHE-
654483) and the National Institutes of Health■■ok?■■ (NIH) (R01
1
GM127778). D.A. is supported by the Margaret and Herman Sokol Fel-
lowship. T.D. is a recipient of the Alfred P. Sloan Research Fellowship
(FG-2018-10354) and the Camille and Henry Dreyfus Founda-
tion■■OK?■■ (Camille-Dreyfus Teacher-Scholar Award TC-19-019).
N
ati
o
n
a
lS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
(C
H
E-1
6
5
4
4
8
3)Nati
o
n
a
lInstitutesof
H
e
a
l
th (R
0
1
G
M
1
2
7
7
7
8)A
l
f
re
d
P
.
S
l
o
a
n
F
o
u
n
d
ati
o
n
(FG-2
0
1
8-1
0
3
5
4)C
a
m
i
l
e-Dreyfus
T
e
a
c
h
er-S
c
h
o
l
ar
A
w
ard (TC-19-0
1
9)
A mechanistic hypothesis consistent with our findings
is presented in Scheme 5. Oxidative addition and reduction
of a nickel(I) bromide species to the aryl bromide electro-
Acknowledgment
19
phile results in an arylnickel(I) species. This intermediate
undergoes migratory insertion with the alkene substrate.
Oxidative addition of another molecule of aryl bromide to
the arylnickel(I) makes a nickel(III) species. This open-shell
intermediate can eject a stabilized benzylic radical, which
accounts for our observations of both the benzylic dimer
byproduct and the trans-diastereoselectivity with indene.
This reversible radical ejection is consistent with computa-
tional work performed by Kozlowski and co-work-
We would like to thank Dr. Chunhua Hu for X-ray crystallographic
analysis and Prof. Jim Canary for sharing chiral HPLC columns.
References
(1) (a) Giri, R.; KC, S. J. Org. Chem. 2018, 83, 3013. (b) Derosa, J.;
Apolinar, O.; Kang, T.; Tran, V. T.; Engle, K. M. Chem. Sci. 2020,
1
1, 4287.
2) (a) Chapdelaine, M. J.; Hulce, M. Org. React. 2004, 38, 225.
b) Ihara, M.; Fukumoto, K. Angew. Chem. Int. Ed. Engl. 1993, 32,
010. (c) Wang, X.; An, J.; Zhang, Z.; Tan, F.; Chen, J.; Xiao, W.
(
(
1
16
ers. ■■ref 14?■■ Recombination of this radical with the
chiral nickel catalyst followed by reductive elimination fur-
nishes the diarylated product and regenerates the nickel(I)
bromide.
Org. Lett. 2011, 13, 808.
(3) Urkalan, K. B.; Sigman, M. S. Angew. Chem. Int. Ed. 2009, 48,
3146.
(
4) (a) Liao, L.; Jana, R.; Urkalan, K. B.; Sigman, M. S. J. Am. Chem.
Soc. 2011, 133, 5784. (b) McCammant, M. S.; Liao, L.; Sigman, M.
S. J. Am. Chem. Soc. 2013, 135, 4167. (c) Stokes, B. J.; Liao, L.; de
Andrade, A. M.; Wang, Q.; Sigman, M. S. Org. Lett. 2014, 16,
1/2 Zn
ArBr
Ar
Ar
R
I
[
Ni ]BrH
1/
2 ZnBr2
4
666.
5) Liu, Z.; Zeng, T.; Yang, K. S.; Engle, K. M. J. Am. Chem. Soc. 2016,
38, 15122.
(6) (a) Wu, X.; Lin, H.; Li, M.; Li, L.; Han, Z.; Gong, L. J. Am. Chem. Soc.
2015, 137, 13476. (b) Stokes, B. J.; Liao, L.; de Andrade, A. M.;
Wang, Q.; Sigman, M. S. Org. Lett. 2014, 16, 4666.
(
1
Ar
R
Ar
II
[
Ni ]Br
II
[NiIII]Br
Ar
[
Ni ]Br
Ar
Ar
R
1/
2 Zn
(
(
7) Yasui, Y.; Kamisaki, H.; Takemoto, Y. Org. Lett. 2008, 10, 3303.
8) (a) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.;
Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S.
Science 2016, 352, 801. (b) Derosa, J.; Tran, V. T.; Boulous, M. N.;
Chen, J. S.; Engle, K. M. J. Am. Chem. Soc. 2017, 139, 10657.
ArBr
1/
2 ZnBr2
[
NiI]
NiI]
Ar
[
Ar
R
(
c) Shrestha, B.; Basnet, P.; Dhungana, R. K.; Kc, S.; Thapa, S.;
Sears, J. M.; Giri, R. J. Am. Chem. Soc. 2017, 139, 10653.
d) Derosa, J.; van der Puyl, V. A.; Tran, V. T.; Liu, M.; Engle, K. M.
R
(
Scheme 5 Proposed catalytic cycle
Chem. Sci. 2018, 9, 5278. (e) Huang, D.; Olivieri, D.; Sun, Y.;
Zhang, P.; Newhouse, T. R. J. Am. Chem. Soc. 2019, 141, 16249.
(
1
f) Gao, P.; Chen, L. A.; Brown, M. K. J. Am. Chem. Soc. 2018, 140,
0653.
Future Outlook
We have developed the first intermolecular asymmetric
diarylation of vinylarenes using a chiral biOx-nickel cata-
lyst. The enantioselectivity is enhanced by the use of an
auxiliary N-oxyl radical ligand, although the precise role of
this radical remains obscure. However, we have shown that
the radical mechanistic pathways available to nickel can be
harnessed to elicit control over reaction outcomes in a dif-
ferent way than palladium commonly operates. We antici-
pate that the elucidation of the precise role of the N-oxyl
additive could provide insight for the development of
asymmetric nickel-mediated reactions with mechanisms
invoking radical pathways.
(9) (a) Cong, H.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 3788.
(b) Wang, K.; Ding, Z.; Zhou, Z.; Kong, W. J. Am. Chem. Soc. 2018,
140, 12364. (c) Jin, Y.; Wang, C. Angew. Chem. Int. Ed. 2019, 58,
6722. (d) Tian, Z. X.; Qiao, J. B.; Xu, G. L.; Pang, X.; Qi, L.; Ma, W.
Y.; Zhao, Z. Z.; Duan, J.; Du, Y. F.; Su, P.; Liu, X. Y.; Shu, X. Z. J. Am.
Chem. Soc. 2019, 141, 7637.
(
10) (a) Weix, D. J. Acc. Chem. Res. 2015, 48, 1767. (b) Wang, X.; Dai,
Y.; Gong, H. Top. Curr. Chem. 2016, 374, 43.
(11) Garcia-Dominguez, A.; Li, Z.; Nevado, C. J. Am. Chem. Soc. 2017,
39, 6835.
12) Hazari, N.; Melvin, P. R.; Beromi, M. M. Nat. Rev. Chem. 2017, 1,
025.
1
(
0
©
2020. Thieme. All rights reserved. Synlett 2020, 31, A–E