OXIDATION AND COMPROPORTIONATION REACTIONS
385
interconverting MTO and A are not shown. At the
outset, the oxidation of PhCH2OH by B is negligible
BIBLIOGRAPHY
relative to its oxidation by the oxammonium ion.
1. Semmelhack, M. F.; Chou, C. S.; Cortes, D. A. J Am
Chem Soc 1983, 105, 4492.
2. Inokuchi, T.; Matsumoto, S.; Fukushima, M.; Torii, S.
Bull Chem Soc Jpn 1991, 64, 796.
3. Anelli, P. L.; Banfi, S.; Montanari, F.; Quici, S. J Org
Chem 1989, 54, 2970.
4. Siedlecka, R.; Skarzewski, J.; Mochowski, J. Tetrahe-
dron Lett 1990, 31.
H2O2
PhCHO PhCH2OH
k2
A
B
R2NOH
PhCHO ϩ Hϩ
A
R2NHOHϩ
R2NOϩ
Hϩ
k8
PhCH2OH
R2NOH, k4
ϩ
•
5. Leanna, M. R.; Sowin, T. J.; Morton, H. E. Tetrahedron
Lett 1992, 33, 5029.
2 R2NO ϩ H
Scheme IV
6. Cella, J. A.; McGrath, J. P.; Kelley, J. A.; Soukarry,
E. O.; Hilpert, L. J Org Chem 1977, 42, 2077.
7. Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.;
Chou, C. S. J Am Chem Soc 1984, 106, 3374.
8. Yamaguchi, M.; Miyazawa, T.; Takata, T.; Endo, T.
Pure Appl Chem 1990, 62, 217.
9. Zauche, T. H.; Espenson, J. H. Inorg Chem 1997, 22,
5257.
10. Sen, V. D.; Golubev, V. A.; Efremova, N. N. Izv Akad
Nauk, Ser Khim 1982, 61.
11. Murray, R. W.; Iyanar, K.; Chen, J.; Wearing, J. T. Tet-
rahedron Lett 1996, 37, 805.
12. Murray, R. W.; Iyanar, K.; Chen, J.; Wearing, J. T. Tet-
rahedron Lett 1995, 36, 6415.
13. Zauche, T. H.; Espenson, J. H. Inorg Chem, 1998, 37,
6827.
14. Paleos, C. M. J Chem Soc, Chem Commun 1977, 345.
15. Yamaguchi, M.; Miyazawa, T.; Takata, T.; Endo, T.
Pure Appl Chem 1990, 62, 217–222.
The catalytic cycle cannot be sustained for long,
however, because the rapid comproportionation reac-
tion drains off the oxammonium ion. These experi-
ments were run without added Hϩ, so that the equilib-
rium in eq. (4) would lie well to the right. To limit the
occurrence of reaction (4), which limits the effective-
ness of a catalytic mechanism, [MTO] was increased
to 40 mM and [R2NOϩ]0 was decreased to 0.1 mM.
Aldehyde formation was detected, but it arises mainly
from the reaction of B, not R2NOϩ, with PhCH2OH.
Given the rate constants and these observations, it
can be recognized that comproportionation limits the
catalytic applicability of this scheme. Hypochlorite, a
two-electron acceptor, leads to successful oxidations.
It appears that under these conditions the MTO-
TEMPO co-catalysts are relatively ineffective. It was
difficult to sustain the oxidation of alcohol by R2NOϩ
since it is being more rapidly consumed by reaction
(4). Note that the equilibrium in reaction (4) could be
reversed at higher [Hϩ]. With that, the oxyl radical
would be an intermediate, not a dead, end. Conditions
of high [Hϩ] are, however, incompatible with the need
for R2NOH, not the nonreactive R2NHOHϩ.
16. Golubev, V. A.; Sen, V. D.; Kulyk, I. V.; Aleksandrov,
A. L. Izv Akad Nauk, Ser Khim 1974, 10, 2235–2243.
17. Hansen, P. J.; Espenson, J. H. Inorg Chem 1995, 34,
5839.
18. Anelli, P. L.; Banfi, S.; Montanari, F.; Quici, S. J Org
Chem 1989, 54, 2970–2972.
19. Abu-Omar, M.; Hansen, P. J.; Espenson, J. H. J Am
Chem Soc 1996, 118, 4966–4974.
20. Espenson, J. H.; Abu-Omar, M. M. Adv Chem Ser
1997, 253, 99–134.
This research was supported by a grant from the National
Science Foundation (CHE–9007283). Some experiments
were conducted with the use of the facilities of the Ames
Laboratory.
21. Golubev, V. A.; Borislavskii, V. N.; Aleksandrov, A. L.
Izv Akad Nauk, Ser Khim 1977, 2025–2043.
22. De Nooy, A. E.; Besemer, A. C.; Van Bakkum, H. Syn-
thesis 1996, 1153–1174.