Chemistry of Biacetyl on Ag(111)
J. Phys. Chem., Vol. 100, No. 39, 1996 15899
(15) Noyes, W. A., Jr.; Mulac, W. A.; Matheson, M. S. J. Chem. Phys.
1962, 36, 880.
by Ag-derived features, but the influence of impurities, i.e., C
and O, is evident in the non-negligible alteration of the Ag
d-band region. After annealing to 700 K, the work function
was, however, indistinguishable from that of clean Ag(111).
(16) Padnos, N.; Noyes, W. A., Jr. J. Phys. Chem. 1964, 68, 464.
(17) Sidebottom, H. W.; Badock, C. C.; Calvert, J. G.; Rabe, B. R.;
Damon, E. K. J. Am. Chem. Soc. 1972, 94, 13.
(18) Kaya, K.; Harshbarger, W. R.; Robin, M. B. J. Chem. Phys. 1974,
60, 4231.
5. Conclusions
(19) Imamura, T.; Onitsuka, O.; Murai, H.; Obi, K. J. Phys. Chem. 1985,
89, 4921.
One monolayer biacetyl adsorbs at 110 K and desorbs
molecularly on Ag(111) at 180 K. Fifty-electronvolt electron
irradiation of biacetyl leads to the breaking of C-C and C-H
bonds with very little, if any, electron-induced formation of
atomic oxygen. Consequently, our model includes CH3, H,
CH3CdO, CH2dCdO, CO, and CH2C-O(a)CdOCH3 as the
major reaction products (shown more fully in Figure 6).
Ejection of CO, CH3, ketene (CH2dCdO), and ethane into the
gas phase occurs during irradiation. CO and CH3 are the major
desorption species. No parent desorption is observed during
irradiation. We propose that impact ionization leads to the
cleavage of the H3C-CO bond and prompt desorption of CH3,
leaving an excited -COCOCH3 species which decomposes to
form acetyl and CO fragments, the latter desorbing. After
irradiation, there is evidence for the following adsorbed spe-
cies: CH3, H, CH3CdO, and CH2C-O(a)CdOCH3. We
propose two reaction pathways for the methane desorption peak
at 235 K: (1) the CH3 group combines with H which was
formed on the surface during irradiation by the breaking of a
C-H bond in biacetyl, and (2) the methyl fragment recombines
with a hydrogen atom from the dehydrogenation of an acetyl
group and, consequently, results in desorption of ketene and
CH4. Ketene desorption at 240 K supports this claim. Methane
desorption at 315 K is attributed to decomposition of CxHyOz,
a process that leaves C(a) and O(a); the O(1s) XPS intensity does
not change when this CH4 desorbs. Finally, some partially
dehydrogenated biacetyl fragments rehydrogenate by scavenging
H from the remaining hydrocarbon species and desorb at 440
K as biacetyl. This leaves only minor quantities, e8% of
original amounts, of adsorbed C and O up to 700 K.
(20) Alvisatos, A. P.; Waldeck, D. H.; Harris, C. B. J. Chem. Phys.
1985, 82, 541.
(21) Qin, Q.; Zhang, Z.; Yang, X.; Zheng, Q. Proc. SPIE-Int. Soc. Opt.
Eng. 1995, 2547, 389.
(22) Pylant, E. D.; Junker, K. H.; Szulczewski, G.; Hubbard, M. J.;
White, J. M. To be submitted for publication.
(23) Pylant, E. D.; Hubbard, M. J.; White, J. M. J. Vac. Sci. Technol. A
1996, 14, 1684.
(24) Koel, B. E.; Peebles, D. E.; White, J. M. Surf. Sci. 1983, 125, 709.
(25) XPS peak-fitting program: ISTFIT, by C. Truong.
(26) McLafferty, F. W.; Stauffer, D. B. In The Wiley/NBS Registry of
Mass Spectral Data; Wiley: New York, 1989.
(27) The following procedure was used: (1) the 43 amu signal at 450
K was taken as background level and subtracted uniformly, (2) the resulting
signal was plotted in semilog form, i.e., ln(43 amu signal) versus time (not
temperature), and the slope between 220 and 320 K (70-100 s) was used
as the pumping speed characteristic, (3) from the slope determined in step
2, a pumping speed correction was computed and subtracted from the 43
amu signal for temperatures higher than the peak, and finally, (4) a constant
residual was subtracted to force to zero the average signal between 110
and 120 K.
(28) Armstrong, J. L.; Pylant, E. D.; White, J. M. To be submitted for
publication.
(29) Chan, C.-M.; Aris, R.; Weinberg, W. H. Appl. Surf. Sci. 1978, 1,
360.
(30) Sun, Z.-J.; Mackay, R. S.; White, J. M. Surf. Sci. 1993, 296, 36.
(31) Wassmuth, H.-W.; Ahner, J.; Ho¨fer, M.; Stolz, H. Prog. Surf. Sci.
1993, 42, 257.
(32) Ahner, J.; Wassmuth, H.-W. Surf. Sci. 1993, 287, 125.
(33) Jakob, P.; Menzel, D. Surf. Sci. 1989, 220, 70.
(34) Klekamp, A.; Umbach, E. Surf. Sci. 1991, 249, 75.
(35) Tyrrell, J. J. Am. Chem. Soc. 1979, 101, 3766.
Further investigations are underway to examine biacetyl
adsorption geometries by FTIR, the variation, with initial
biacetyl coverage, of the electron-induced products, and the
photon-induced chemistry of adsorbed biacetyl.
(36) Gelius, V.; Heden, P. F.; Hedman, J.; Lindberg, B. J.; Manne, R.;
Nordberg, R.; Nordling, C.; Siegbahn, K. Phys. Scr. 1970, 2, 70.
(37) Wagner, C. D.; Zatko, D. A.; Raymond, R. H. Anal. Chem. 1980,
52, 1445.
(38) Gerenser, L. J.; Baetzold, R. C. Surf. Sci. 1980, 89, 259.
(39) Von Niessen, W.; Bieri, G.; Asbrink, L. J. Electron Spectrosc. Relat.
Phenom. 1980, 21, 175.
Acknowledgment. This work is supported in part by NSF
Grant CHE9319640 and by the Robert A. Welch Foundation.
E.D.P. would like to thank M. F. Arendt and A. L. Schwaner
for their helpful discussions.
(40) Walzl, K. N.; Xavier, I. M., Jr.; Kuppermann, A. J. Chem. Phys.
1987, 86, 6701.
(41) Roop, B.; Blass, P. M.; Zhou, X.-L.; White, J. M. J. Chem. Phys.
1989, 90, 608.
References and Notes
(42) Zhou, X.-L.; Coon, S.; White, J. M. J. Chem. Phys. 1990, 92, 1504.
(43) Madey, T. E.; Yates, J. T., Jr. J. Vac. Sci. Technol. 1971, 8, 525.
(44) Zhou, X.-L.; White, J. M.; Koel, B. E. Surf. Sci. 1989, 218, 201.
(1) Zhou, X.-L.; Schwaner, A. L.; White, J. M. J. Am. Chem. Soc.
1993, 115, 4309.
(2) See, for example: (a) Zhou, X.-L.; White, J. M. J. Phys. Chem.
1992, 96, 7703. (b) Zhou, X.-L.; Zhu, X.-Y.; White, J. M. Surf. Sci. Rep.
1991, 13, 73. (c) Liu, Z.-M.; Zhou, Z.-L.; White, J. M. Chem. Phys. Lett.
1992, 198, 615. (d) Zhou, X.-L.; White, J. M. Surf. Sci. 1991, 241, 244.
(3) Schwaner, A. L.; White, J. M. To be submitted for publication.
(4) Schwaner, A. L.; Fieberg, J. E.; White, J. M. To be submitted for
publication.
(45) Buchanan, D. A. Doctoral Dissertation, University of Texas at
Austin, 1991.
(46) White, J. M. Langmuir 1994, 10, 3946.
(47) Tolman, C. A.; Riggs, W. M.; Linn, W. J.; King, C. M.; Wendt, R.
C. Inorg. Chem. 1973, 12, 2772.
(48) Barteau, M. A.; Madix, R. J. Surf. Sci. 1982, 120, 262.
(5) Converse, S.; Szulczewski, G.; Szabo, A.; Mahoney, S.; White, J.
M. To be submitted for publication.
(49) Bukhtiyarov, V. I.; Boronin, A. I.; Savchenko, V. I. Surf. Sci. 1990,
232, L205.
(6) Wachs, I. E.; Madix, R. J. Surf. Sci. 1978, 76, 531.
(7) Ayre, C. R.; Madix, R. J. Surf. Sci. 1994, 303, 297.
(8) Sault, A. G.; Madix, R. J. Surf. Sci. 1986, 176, 415.
(9) We use the subscript (a) to indicate which atom(s) bind(s) to the
substrate.
(10) Calvert, J. G.; Pitts, J. N., Jr. In Photochemistry; Wiley and Sons:
New York, 1966.
(11) Noyes, W. A., Jr.; Porter, G. B.; Jolley, J. E. Chem. ReV. 1956, 56,
49.
(50) Muilenberg, G. E. In Handbook of X-ray Photoelectron Spectros-
copy; Perkin-Elmer: Eden Prairie, MN, 1979.
(51) Clark, D. T.; Thomas, H. R. J. Polym. Sci., Polym. Chem. Ed. 1978,
16, 791.
(52) Johansson, G.; Hedman, J.; Berndtsson, A.; Klasson, M.; Nillsson,
R. J. Electron Spectrosc. Relat. Phenom. 1973, 2, 295.
(53) Campbell, C. T. Surface Sci. 1985, 157, 43.
(12) Sidman, J. W.; McClure, D. S. J. Am. Chem. Soc. 1955, 77, 6461.
(13) Sheats, G. F.; Noyes, W. A., Jr. J. Am. Chem. Soc. 1955, 77, 1421.
(14) Bell, W. E.; Blacet, F. E. J. Am. Chem. Soc. 1954, 76, 5332.
(54) Grant, R. B.; Lambert, R. M. Surf. Sci. 1984, 146, 256.
JP9605820