8726 J. Phys. Chem. B, Vol. 101, No. 43, 1997
Zhang and Bauer
Q(R,c) can be approximated by the quadratic expression
(7) Gl a¨ nzer, K.; Troe, J. HelV. Chim. Acta 1972, 55, 2884.
8) Perche, A.; Tricot, J. C.; Lucquin, M. J. Chem. Res. Synop. 1979,
04; J. Chem. Res., Miniprint 1979, 3219.
(9) Perche, A.; Lucquin, M. J. Chem. Res., Miniprint 1979, 3257.
10) Hsu, D. S. Y.; Lin, M. C. J. Energ. Mater. 1985, 3, 95.
(
3
T
T
Q(R) ) (∆R) F F(∆R)
(A5)
(
(
11) (a) Toby, A.; Kutschke, K. O. Can. J. Chem. 1959, 37, 672. (b)
where Q(R) = Q(R,c) in the neighborhood of R0. The rank
order of the importance of the reactions and the interconnections
of the reactions are revealed by performing eigenvalue-
Balke, A. R.; Kutschke, K. O. Can. J. Chem. 1959, 37, 1462.
12) Choudhury, T. K.; Sanders, W. A.; Lin, M. C. J. Phys. Chem. 1989,
93, 5143.
(13) Bradley J. Trans. Faraday Soc. 1961, 57, 1750.
14) Mallard, G. W.; Westley, F.; Herron, J. T.; Hampson, R. F. NIST
(
T
eigenvector decomposition of the matrix F F.
(
Equation A4 can be rewritten in canonical form by introduc-
Chemical Kinetics Database, Version 6.0; NIST Standard Reference Data;
National Institute of Standards and Technology: Gaithersburg, MD, 1994.
(15) Miyauchi, T.; Mori, Y.; Imamura, A. Symp. (Int.) Combust., [Proc.]
T
T
ing a new set of parameters Ψ ) U R, where U is the matrix
T
T
of normalized eigenvector uj of F F such that uj uj ) 1 (j ) 1,
, ..., p).
1
977, 16, 1073.
16) Slagle, I. R.; Gutman, D.; Davies, J. W.; Pilling, M. J. J. Phys.
Chem. 1988, 92, 2455.
17) Davidson, D. F.; Di Rosa, M. D.; Chang, E. J.; Hanson, R. K.;
Bowman, C. T. Int. J. Chem. Kinet. 1995, 27, 1179.
18) Thomsen, E. L.; Nielsen, O. J.; Egsgard, H. Chem. Phys. Lett. 1993,
15, 257.
2
(
p
(
2
Q(Ψ) ) λ (∆Ψ )
(A6)
∑
j
j
(
j)1
2
(
19) Turanyi, T. J. Math. Chem. 1990, 5, 203.
The new set of parameters are called principal components. ∆Ψ
(20) Clarke, B. L. AdV. Chem. Phys. 1980, 43, 1.
(21) Turnyi, T.; Berces, T.; Vajda, J. Int. J. Chem. Kinet. 1989, 21, 83.
(
Hungarian Academy of Sciences, Budapest, Hungary. See also: Turanyi,
T. Comput. Chem. 1990, 14, 253.
(23) Vajda, S.; Valko, P.; Turanyi, T. Int. J. Chem. Kinet. 1985, 17, 55.
(
(
Phys. Chem. 1979, 83, 217.
(26) Batt, L.; McCulloch, R. D.; Milne, R. T. Int. J. Chem. Kinet. 1975,
, 441.
(
Technol. 1975, 10, 203.
(28) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F.; Jr.; Kerr,
J. A.; Troe, J. J. Phys. Chem. Ref. Data 1989, 18, 881.
T
T
)
U (∆R); λ1 > λ2 > ... > λp are the eigenvalues of F F.
22) Turanyi, T. Central Research Institute for Chemistray of the
When a parameter is perturbed along an eigenvector uj in the
space of the transformed coordinates Ψj, ∆Ψj ) 0 for i * j.
2
Q(Ψ) ) λj(∆Ψj) , and therefore λj measures the significance
24) Gl a¨ nzer, K.; Troe, J. Ber. Bunsen-Ges. Phys. Chem. 1974, 78, 182.
25) Canosa, C.; Penzhorn, R.-D.; von Sonntag, C. Ber. Bunsen-Ges.
of reactions that occur in the principal component Ψj. Those
reactions that are characterized by large eigenvectors and at the
same time also belong to a reaction group characterized with a
large eigenvalue are identified as the most important reactions
in a mechanism. In practice, threshold values of eigenvalue
and eigenvector are chosen so that chemical reactions that belong
to a reaction group characterized with a small eigenvalue or
reactions that belong to a reaction group characterized by a large
eigenvalue but correspond to an eigenvector below the threshold
value are considered redundant.
Close examination of the elements of an eigenvector that
belongs to a specific eigenvalue may reveal connections among
the reactions. For example, fast equilibria can be readily
identified by two large eigenvector elements of equal value but
of opposite signs. This may also be applied to a situation where
species i is produced by one or more reactions and removed
quickly by another set of one or more reactions; i.e., species i
is then in a pseudo-steady state. These reactions and species
are usually redundant because they have no effect on the kinetic
behaviors of other species in the system.
In eq A5, all of the chemical species have been considered.
Therefore, the reduced reactions mechanism should reproduce
the kinetic behaviors of all species. In some cases, however,
one might be interested only in reproducing the kinetic behaviors
of all major chemical species or the “observed species”; then
the mechanism can be greatly simplified. This type of restricted
principal component analysis can also be used to identify
reactions critical to the formation of individual chemical species.
A FORTRAN program package called KINAL22 was devel-
oped by Turanyi to perform principal component analysis on
both concentration sensitivity and rate sensitivity matrices. This
package was used extensively in our analysis of the mechanism
in Table 1.
7
27) Maloney, K. L.; Gangloff, H. J.; Matula, R. A. Combust. Sci.
(
29) Batt, L.; Milne, R. T.; McCulloch, R. D. Int. J. Chem. Kinet. 1977,
, 567.
30) Ohmori, K.; Yamasaki, K.; Matsui, H. Bull. Chem. Soc. Jpn. 1993,
66, 51.
9
(
(
31) Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data 1986, 15,
1
087.
(32) Borrell, P.; Cobos, C. J.; Luther, K. J. Phys. Chem. 1988, 92, 4377.
(33) Tsang, W.; Herron, J. T. J. Phys. Chem. Ref. Data 1991, 20, 609.
(
(
34) Gl a¨ nzer, K.; Troe, J. Ber. Bunsen-Ges. Phys. Chem. 1974, 78, 71.
35) Jodkowski, J. T.; Ratajczak, E.; Sillesen, A.; Pagsberg, P. Chem.
Phys. Lett. 1993, 203, 490.
36) Markwalder, B.; Gozel, P.; van den Bergh, H. J. Phys. Chem. 1993,
97, 5260.
(
(
37) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr,
J. A.; Troe, J. J. Phys. Chem. Ref. Data. 1992, 21, 1125.
(
38) Zaslonko, I. S.; Smirnov, V. N.; Tereza, A. M. Kinet. Catal. 1993,
34, 531; Kinet. Katal. 1993, 34, 599.
39) Batt, L.; Milne, R. T.; McCulloch, R. D. Int. J. Chem. Kinet. 1977,
, 567.
(
9
(
40) Koda, S.; Tanaka, M. Combust. Sci. Technol. 1986, 47, 165.
(41) Chan, W. H.; Nordstrom, R. J.; Calvert, J. G.; Shaw, J. H. Chem.
Phys. Lett. 1976, 37, 441.
42) Anastasi, C.; Hancock, D. U. J. Chem. Soc., Faraday Trans. 2 1988,
4, 1697.
(
8
(
43) Tsang, W. J. Phys. Chem. Ref. Data 1987, 16, 471.
(44) Slack, M. W.; Grillo, A. R. Combust. Flame 1989, 40, 155.
(
45) Streit, G. E.; Wells, J. S.; Fehsenfeld, F. C.; Howard, C. J. J. Chem.
Phys. 1979, 70, 3439.
46) Lin, C-Y.; Wang, H.-T.; Lin, M. C.; Melius, C. F. Int. J. Chem.
Kinet. 1990, 22, 455.
47) Warnatz, J. Rate coefficients in the C/H/O system. In Combustion
Chemistry; Gardiner, W. C., Jr., Ed.; Springer-Verlag, New York, 1984; p
97.
(
(
1
(
(
(
(
48) Fifer, R. A. Ber. Bunsen-Ges. Phys. Chem. 1975, 10, 613.
49) Kelly, N.; Heicken, J. J. Photochem. 1978, 8, 83.
50) He, Y.; Sanders, W. A.; Lin, M. C. J. Phys. Chem. 1988, 92, 5474.
51) Laidler, K. J.; Sagert, N. H.; Wojciechowski, B. W. Proc. R. Soc.
References and Notes
(
1) Tsang, W.; Robaugh, D.; Mallard, W. G. J. Phys. Chem. 1986, 90,
968.
2) Adams, G. F.; Shaw, R. W.; Jr. Annu. ReV. Phys. Chem. 1992, 43,
London 1962, 270, 254.
5
3
(52) Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just,
Th.; Kerr, J. A.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. J.
Phys. Chem. Ref. Data 1992, 21, 411.
(
11.
(
3) Anex, D. S.; Allman, J. C.; Lee,Y. T. In Chemistry of Energetic
Materials; Bulusu, S. N. Ed.; Academic Press: New York, 1991; Chapter
(53) Kern, R. D.; Singh, H. J.; Wu, C. H. Int. J. Chem. Kinet. 1988, 20,
731.
(54) Stephens, K. M.; Bauer, S. H. Spectrochim. Acta 1994, 50A, 741.
(55) Kilie, H. S.; et al. J. Phys. Chem. 1997, 101A, 817.
(56) Frost, M. J.; Smith, I. W. M. J. Chem. Soc., Faraday Trans. 1990,
86, 1751.
2
.
(4) Shaw, R.; Walker, F. E. J. Phys. Chem. 1977, 81, 2572.
(5) Zhao, X.; Hintsa, E. J.; Lee, Y. T. J. Chem. Phys. 1988, 88, 801.
(6) Borman, S. Chem. Eng. News 1994, 72 (3), 18.