Journal of the American Chemical Society
Page 10 of 11
(15) Duine, J. A.; Frank, J.; van Zeeland, J. K. Glucose Dehydrogenase from
Acinetobacter Calcoaceticus: A Quinoprotein. FEBS Lett. 1979, 108 (2), 443–
446.
(16) Haft, D. H. Bioinformatic Evidence for a Widely Distributed, Ribosomally
Produced Electron Carrier Precursor, Its Maturation Proteins, and Its
(32) Sukumar, N.; Dewanti, A.; Merli, A.; Rossi, G. L.; Mitra, B.; Mathews, F. S.
Structures of the G81A Mutant Form of the Active Chimera of ( S )-Mandelate
Dehydrogenase and Its Complex with Two of Its Substrates. Acta Crystallogr.
(33) Molla, G.; Sacchi, S.; Bernasconi, M.; Pilone, M. S.; Fukui, K.; Pollegioni, L.
Characterization of Human D -Amino Acid Oxidase. FEBS Lett. 2006, 580,
1
2
3
4
Nicotinoprotein Redox Partners. BMC Genomics 2011
, 12 (1), 21.
5
6
7
8
(17) Ayikpoe, R.; Ngendahimana, T.; Langton, M.; Bonitatibus, S.; Walker, L.
M.; Eaton, S. S.; Eaton, G. R.; Pandelia, M. E.; Elliott, S. J.; Latham, J. A.
Spectroscopic and Electrochemical Characterization of the Mycofactocin
Biosynthetic Protein, MftC, Provides Insight into Its Redox Flipping Mechanism.
Biohcemistry 2019, 58, 940–950.
(18) Haft, D. H.; Pierce, P. G.; Mayclin, S. J.; Sullivan, A.; Gardberg, A. S.;
Abendroth, J.; Begley, D. W.; Phan, I. Q.; Staker, B. L.; Myler, P. J.; Marathias,
V.M.; Lorimer, D.D.; Edwards, T.E. Mycofactocin-Associated Mycobacterial
Dehydrogenases with Non-Exchangeable NAD Cofactors. Sci. Rep. 2017, 7
(19) Van Der Werf, M. J.; Van Der Ven, C.; Barbirato, F.; Eppink, M. H. M.; De
Bont, J. A. M.; Van Berkel, W. J. H. Stereoselective Carveol Dehydrogenase from
Rhodococcus Erythropolis DCL14. J. Biol. Chem. 1999, 274 (37), 26296–
26304.
(20) Krishnamoorthy, G.; Kaiser, P.; Lozza, L.; Hahnke, K.; Mollenkopf, H.;
Kaufmann, S. H. E. Mycofactocin Is Associated with Ethanol Metabolism in
Mycobacteria. MBio 2019, 10 (3), 1–14.
(34) Walsh, C. T.; Schonbrunn, A.; Abeles, R. H. Studies on the Mechanism of
Action of D-Amino Acid Oxidase. J. Biol. Chem. 1971, 246 (22), 6855–6866.
(35) Umhau, S.; Pollegioni, L.; Molla, G.; Diederichs, K.; Welte, W.; Pilone, M.
S.; Ghisla, S. The X-Ray Structure of D -Amino Acid Oxidase at Very High
Resolution Identifies the Chemical Mechanism of Flavin-Dependent Substrate
Dehydrogenation. Proc. Natl. Acad. Sci. 2000, 97 (23), 12463–12468.
(36) Lindqvist, Y. Refined Structure of Spinach Glycolate Oxidase at 2 A
Resolution. J. Mol. Biol. 1989, 209, 151–166.
(37) Porter, D. J.; Voet, J. G.; Bright, H. J. Direct for Carbanions and Covalen
N5-Flavin-Carbanion Adducts as Catalytic Intermediates in the Oxidation of
Nitroethane by D-Amino Acid Oxidase. J. Biol. Chem. 1973, 248 (12), 4400–
4416.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(38) Hartman, C.; Brzovic, P.; Klinman, J. P. Spectroscopic Detection of
Chemical Intermediates in Thereaction of Para-Substituted Benzlamines with
Bovine Serium Amine Oxidase. Biochemistry 1993
, 32, 2234–2241.
(39) Jonsson, T.; Glickman, M. H.; Sun, S.; Klinman, J. P. Experimental Evidence
for Extensive Tunneling of Hydrogen in the Lipoxygenase Reaction: Implications
for Enzyme Catalysis. J. Am. Chem. Soc. 1996, 7863 (10), 10319–10320.
(40) Goosen, N.; Huinen, R. G. M.; Van de Putte, P. A 24-Amino-Acid
Polypeptide Is Essential for the Biosynthesis of the Coenzyme Pyrrolo-
Quinoline-Quinone. J. Bacteriol. 1992, 174 (4), 1426–1427.
(41) Barr, I.; Latham, J. A.; Iavarone, A. T.; Chantarojsiri, T.; Hwang, J. D.;
Klinman, J. P. The Pyrroloquinoline Quinone (PQQ) Biosynthetic Pathway:
Demonstration of de Novo Carbon-Carbon Cross-Linking within the Peptide
Substrate (PqqA) in the Presence of the Radical SAM Enzyme (PqqE) and Its
(21) Khaliullin, B.; Aggarwal, P.; Bubas, M.; Eaton, G. R.; Eaton, S. S.; Latham, J.
A. Mycofactocin Biosynthesis: Modification of the Peptide MftA by the Radical
S-Adenosylmethionine Protein MftC. FEBS Lett. 2016, 590 (16), 2538–2548.
(22) Bruender, N. A.; Bandarian, V. The Radical S -Adenosyl- L-Methionine
Enzyme MftC Catalyzes an Oxidative Decarboxylation of the C-Terminus of the
MftA
Peptide.
Biochemistry
2016
,
55
(20),
2813–2816.
(23) Khaliullin, B.; Ayikpoe, R.; Tuttle, M.; Latham, J. A. Mechanistic
Elucidation of the Mycofactocin-Biosynthetic Radical S-Adenosylmethionine
Protein, MftC. J. Biol. Chem. 2017
,
292 (31), 13022–13033.
Peptide Chaperone (PqqD). J. Biol. Chem. 2016
, 291 (17), 8877–8884.
(24) Ayikpoe, R.; Salazar, J.; Majestic, B.; Latham, J. A. Mycofactocin
Biosynthesis Proceeds through 3-Amino-5-[(p-Hydroxyphenyl)Methyl]-4,4-
Dimethyl-2-Pyrrolidinone (AHDP); Direct Observation of MftE Specificity
(42) Koehn, E. M.; Latham, J. A.; Armand, T.; Evans, R. L.; Tu, X.; Wilmot, C.
M.; Iavarone, A. T.; Klinman, J. P. Discovery of Hydroxylase Activity for PqqB
Provides a Missing Link in the Pyrroloquinoline Quinone Biosynthetic Pathway.
toward
MftA*.
Biochemistry
2018
,
57,
5379–5383.
J.
Am.
Chem.
Soc.
2019
,
141,
4398–4405.
(25) Williams, E.; Cregeen, D.; Rumsby, G. Identification and Expression of a
CDNA for Human Glycolate Oxidase. Biochim. Biophys. Acta 2000, 1493 (1–
(26) Macheroux, P.; Mulrooney, S. B.; Williams, C. H.; Massey, V. Direct
Expression of Active Spinach Glycolate Oxidase in Escherichia Coli. BBA - Gene
(43) Ameyama, M.; Kazunobu, M.; Ohno, Y.; Shinagawa, E.; Adachi, O.
Existence of a Novel Prosthetic Group, PQQ, in Mebrane‐bound, Electron
Transport Chain‐linked, Primary Dehydrogenases of Oxidative Bacteria. FEBS
Lett. 1981, 130 (2), 179–183.
(44) Bruender, N. A.; Bandarian, V. The Creatininase Homolog MftE from
Mycobacterium Smegmatis Catalyzes a Peptide Cleavage Reaction in the
Biosynthesis of a Novel Ribosomally Synthesized Post-Translationally Modified
Struct. Expr. 1992
4781(92)90046-3.
(27) Gao, C.; Wang, Y.; Zhang, Y.; Lv, M.; Dou, P.; Xu, P.; Ma, C. NAD-
Independent L-Lactate Dehydrogenase Required for L-Lactate Utilization in
Peptide (RiPP). J. Biol. Chem. 2017
,
292 (10), 4371–4381.
Pseudomonas Stutzeri A1501. J. Bacteriol. 2015
,
197 (13), 2239–2247.
(45) Bonnot, F.; Iavarone, A. T.; Klinman, J. P. Multistep, Eight-Electron
Oxidation Catalyzed by the Cofactorless Oxidase, PqqC: Identification of
Chemical Intermediates and Their Dependence on Molecular Oxygen.
Biochemistry 2013, 52, 4667–4675.
(46) Klinman, J. P. How Many Ways to Craft a Cofactor? Proc. Natl. Acad. Sci.
(47) Itoh, S.; Ohshiro, Y.; Agawa, T. Reaction of Reduced PQQ (PQQH2) and
Molecular Oxygen. Bulletin of the Chemical Society of Japan. 1986, pp 1911–
(28) Ayikpoe, R.; Govindarajan, V.; Latham, J. A. Occurrence , Function , and
Biosynthesis of Mycofactocin. Appl. Microbiol. Biotechnol. 2019, 103, 2903–
2912.
(29) Cai, D.; Klinman, J. P. Evidence of a Self-Catalytic Mechanism of 2,4,5-
Trihydroxyphenylalanine Quinone Biogenesis in Yeast Copper Amine Oxidase.
J. Biol. Chem. 1994, 269 (51), 32039–32042.
(30) Tang, C.; Klinman, J. P. The Catalytic Function of Bovine Lysyl Oxidase in
the Absence of Copper. J. Biol. Chem. 2001
,
276 (33), 30575–30578.
(48) Murakami, Y.; Tachi, Y.; Itoh, S. A Model Compound of the Novel Organic
Cofactor CTQ (Cysteine Tryptophylquinone) of Quinohemoprotein Amine
(31) Datta, S.; Mori, Y.; Takagi, K.; Kawaguchi, K.; Chen, Z. W.; Okajima, T.;
Kuroda, S.; Ikeda, T.; Kano, K.; Tanizawa, K.; Mathews, F.S. Structure of a
Quinohemoprotein Amine Dehydrogenase with an Uncommon Redox Cofactor
and Highly Unusual Crosslinking. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (25),
Dehydrogenase. European J. Org. Chem. 2004
, No. 14, 3074–3079.
10
ACS Paragon Plus Environment