tions on a solid support can solve these problems, and we
recently accomplished the first highly selective formation of
pyridines via this strategy.1 Here we are reporting a new
synthetic route to natural and unnatural indanones via regio-
and chemoselective solid-supported [2+2+2] cyclotrimerization
reactions. Previous indanone syntheses via cycloadditions either
involved completely intramolecular cyclotrimerization reac-
tions,4,7 cyclotrimerization of enones,8 or cyclotrimerization
reactions with low regioselectivity.9
Synthesis of Indanones via Solid-Supported
[2+2+2] Cyclotrimerization
Ramesh S. Senaiar, Jesse A. Teske, Douglas D. Young, and
Alexander Deiters*
Department of Chemistry, North Carolina State UniVersity,
Campus Box 8204, Raleigh, North Carolina 27695
The indanone core structure is widely disseminated among
pharmacologically active substances with a wide range of
biological activities, hence efficient and selective approaches
to their synthesis are in demand.10 Additionally, hundreds of
indanone natural products are known,11,12 most importantly the
pterosins (Figure 1), including pterosin P (1), mukagolactone
(2), and monachosorin A (3).13
ReceiVed June 27, 2007
A new facile approach toward natural and unnatural in-
danones has been developed, featuring a solid-supported
[2+2+2] cyclotrimerization as the key step. This strategy
has been applied to the chemo- and regioselective assembly
of indanone arrays and to the total synthesis of a recently
isolated indanone marine natural product.
FIGURE 1. Selected indanone natural products 1-4.
These molecules, and related structures, display a variety of
biological activities including smooth muscle relaxant activity,14
inhibition of cyclooxygenase,15 and mast cell stabilization.16
Recently, the indanone natural product 4 has been isolated from
a marine cyanobacterium.17 This compound shows promising
biological activity as a regulator of tumor angiogenesis by
inhibiting human vascular endothelial growth factor production.
However, low in vivo activity observed after the initial screening
requires additional structural modifications for further improve-
ment,17 but no total synthesis of 4 has been reported to date.
Our synthetic route to indanones commences with the
cyclotrimerization precursor 5, which was rapidly assembled
Recently we initiated a program in developing solid-supported
[2+2+2] cyclotrimerization reactions and applying these reac-
tions to the synthesis of functional molecules.1,2 [2+2+2]
cyclotrimerization reactions are versatile tools in the assembly
of carbo- and heterocyclic structures,3 and they have been
previously employed as key steps in total syntheses.4-6 How-
ever, their application is often hampered by regio- and chemose-
lectivity problems leading to complex product mixtures. This
is especially pronounced in cases where triple bonds with greatly
different reactivity (e.g., due to different substitution patterns)
are employed.3 Conducting [2+2+2] cyclotrimerization reac-
(7) Neeson, S. J.; Stevenson, P. J. Tetrahedron 1989, 45, 6239.
(8) Mori, N.; Ikeda, S.; Sato, Y. J. Am. Chem. Soc. 1999, 121, 2722.
(9) Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Nishiyama, H.; Itoh, K.
Org. Biomol. Chem. 2004, 2, 1287.
(1) Senaiar, R. S.; Young, D. D.; Deiters, A. Chem. Commun. 2006,
1313.
(2) Young, D. D.; Senaiar, R. S.; Deiters, A. Chem. Eur. J. 2006, 12,
5563.
(10) Dolle, R. E.; Le Bourdonnec, B.; Morales, G. A.; Moriarty, K. J.;
Salvino, J. M. J. Comb. Chem. 2006, 8, 597.
(3) (a) Chopade, P. R.; Louie, J. AdV. Synth. Catal. 2006, 348, 2307. (b)
Schore, N. E. [2+2+2] Cycloadditions. In ComprehensiVe Organic
Synthesis; Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon
Press: Oxford, UK, 1991; Vol. 5, 1129. (c) Varela, J. A.; Saa, C. Chem.
ReV. 2003, 103, 3787. (d) Yamamoto, Y. Curr. Org. Chem. 2005, 9, 503.
(e) Saito, S.; Yamamoto, Y. Chem. ReV. 2000, 100, 2901. (f) Vollhardt, K.
P. C. Angew. Chem., Int. Ed. 1984, 23, 539. (g) Kotha, S.; Brahmachary,
E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741.
(11) Syrchina, A. I.; Semenov, A. A. Khim. Prir. Soedin. 1982, 3.
(12) Fugmann, B.; Lang-Fugmann, S.; Steglich, W.; Adam, G. Rompp
encyclopedia of natural products; Thieme: New York, 2000.
(13) Satake, T.; Murakami, T.; Yokote, N.; Saiki, Y.; Chen, C. M. Chem.
Pharm. Bull. 1985, 33, 4175. Saito, M.; Umeda, M.; Enomoto, M.;
Hatanaka, Y.; Natori, S. Experientia 1975, 31, 829.
(14) Sheridan, H.; Frankish, N.; Farrell, R. Eur. J. Med. Chem. 1999,
34, 953.
(4) Anderson, E. A.; Alexanian, E. J.; Sorensen, E. J. Angew. Chem.,
Int. Ed. 2004, 43, 1998.
(15) Li, C. S.; Black, W. C.; Chan, C. C.; Ford-Hutchinson, A. W.;
Gauthier, J. Y.; Gordon, R.; Guay, D.; Kargman, S.; Lau, C. K.; Mancini,
J.; Ouimet, N.; Roy, P.; Vickers, P.: Wong, E.; Young, R. N.; Zamboni,
R.; Prasit P. J. Med. Chem. 1995, 38, 4897.
(16) Frankish, N.; Farrell, R.; Sheridan, H. J. Pharm. Pharmacol. 2004,
56, 1423.
(5) (a) Sternberg, E. D.; Vollhardt, K. P. C. J. Org. Chem. 1982, 47,
3447. (b) Earl, R. A.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1983, 105,
6991. (c) Eichberg, M. J.; Dorta, R. L.; Grotjahn, D. B.; Lamottke, K.;
Schmidt, M.; Vollhardt, K. P. C. J. Am. Chem. Soc. 2001, 123, 9324.
(6) Witulski, B.; Zimmermann, A.; Gowans, N. D. Chem. Commun. 2002,
2984.
(17) Nagle, D. G.; Zhou, Y. D.; Park, P. U.; Paul, V. J.; Rajbhandari, I.;
Duncan, C. J. G.; Pasco, D. S. J. Nat. Prod. 2000, 63, 1431.
10.1021/jo7013565 CCC: $37.00 © 2007 American Chemical Society
Published on Web 09/07/2007
J. Org. Chem. 2007, 72, 7801-7804
7801