C O M M U N I C A T I O N S
migrate along the long axis of the nanobelt, due to the long-range
band-like π-electron delocalization along the nanobelt, leading to
significant enhancement in current. Indeed, over 3 orders of
magnitude increase in current was observed for the nanobelt upon
exposure to the saturated vapor of hydrazine. Such high current
modulation, along with the ultralong length, will make the nanobelts
ideal building blocks in optoelectronic nanodevices.
In summary, millimeter long nanobelts have been fabricated from
an asymmetric PTCDI molecule through a seeded self-assembling
method. The long length of nanobelts facilitates the construction
of two-electrode devices employing the nanobelt as channel
material; the long-range π-π molecular stacking allows for efficient
conductivity modulation through surface doping. A combination
of these two characters will enable broad optoelectronic applications
with these long nanobelts.
Figure 2. (A) UV-vis absorption spectra of 1 (0.6 mM) molecularly
dissolved in ethanol (dotted line) and in the aggregate state dispersed in
1:1 water/ethanol (solid line). (B) Absorption spectra of the aggregate shown
in (A) at different aging times: 0, 5, 24, 48, 72 h. A 2 mm cell was used.
Acknowledgment. This work was supported by NSF (CMMI
0638571), ACS-PRF (45732-G10), and NSFC (20520120221). We
thank Dr. Tiede for help with the XRD measurement.
Supporting Information Available: Synthesis, I-V, spectroscopy,
and microscopy measurements. This material is available free of charge
References
(1) (a) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H.
J. Chem. ReV. 2005, 105, 1491-1546. (b) Grimsdale, A. C.; Mu¨llen, K.
Angew Chem., Int. Ed. 2005, 44, 5592.
Figure 3. I-V curves measured on a single nanobelt deposited across a
pair of gold electrodes separated by 80 µm: (0) in saturated vapor of
hydrazine (140 ppm), (9) in air. Long nanobelt enables expedient deposition
across the large electrode gap.
(2) Xiao, S.; Tang, J.; Beetz, T.; Guo, X.; Tremblay, N.; Siegrist, T.; Zhu,
Y.; Steigerwald, M.; Nuckolls, C. J. Am. Chem. Soc. 2006, 128, 10700.
(3) Wurthner, F. Chem. Commun. 2004, 14, 1564.
Considering the self-assembling mechanism hypothesized above,
if the solvent polarity is too high (i.e., with more volume of water),
the molecular aggregation would become too fast due to the stronger
solvophobic association between the hexylheptyl chains, thereby
leading to formation of more seeding particles and leaving no free
molecules available for the later stage growth of the nanobelt.
Indeed, when increasing the volume ratio of water from 1:1 to 5:1,
only particulate aggregates and some very short nanofibers were
formed from the self-assembly (Figure S7).
(4) Shirakawa, W.; Fujita, N.; Shinkai, S. J. Am. Chem. Soc. 2005, 127, 4164.
(5) (a) Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J.; Zang, L. J.
Am. Chem. Soc. 2005, 127, 10496. (b) Datar, A.; Balakrishnan, K.; Yang,
X.; Zuo, X.; Huang, J.; Oitker, R.; Yen, M.; Zhao, J.; Tiede, D. M.; Zang,
L. J. Phys. Chem. B 2006, 110, 12327. (c) Balakrishnan, K.; Datar, A.;
Naddo, T.; Huang, J.; Oitker, R.; Yen, M.; Zhao. J.; Zang, L. J. Am. Chem.
Soc. 2006, 128, 6576.
(6) Balakrishnan, K.; Datar, A.; Zhang, W.; Yang, X.; Naddo, T.; Huang, J.;
Zuo, J.; Yen, M.; Moore, J. S.; Zang, L. J. Am. Chem. Soc. 2006, 128,
6576.
(7) Briseno, A. L.; Mannsfeld, S. C. B.; Lu, X.; Xiong, Y.; Jenekhe, S. A.;
Bao, Z.; Xia, Y. Nano Lett. 2007, 7, 668.
The self-assembling of 1 was monitored by the absorption
spectral measurement. Upon addition of water to the ethanol
solution of 1, a new absorption band emerged at ca. 550 nm (Figure
2), indicative of the π-π stacking state of the PTCDI molecules.3,5
Moreover, with the aging time, the absorption below 550 nm
(corresponding to individual molecules) was gradually decreased,
while the absorption at longer wavelength (due to the extended
aggregate state) became enhanced. An approximate isobestic point
at 581 nm indicates the stoichiometric conversion from the initially
formed small aggregates (nucleation seeds) to the long nanobelt
structures. The relative stronger absorption at longer wavelengths
is consistent with the extended molecular stacking within the long
nanobelts, for which the electronic transition is primarily determined
by the collective interaction between the large number of cofacially
stacked molecules.
(8) (a) Yamamoto, Y.; Fukushima, T.; Suna, Y.; Ishii, N.; Saeki, A.; Seki,
S.; Tagawa, S.; Taniguchi, M.; Kawai, T.; Aida, T. Science 2006, 314,
1761. (b) Hill, J. P.; Jin, W.; Kosaka, A.; Fukushima, T.; Ichihara, H.;
Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004,
304, 1481.
(9) (a) Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Bredas, J.-L.;
Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436. (b) Law, K.-
Y. Chem. ReV. 1993, 93, 449. (c) Jones, B. A.; Ahrens, M. J.; Yoon,
M.-H.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. Angew. Chem.,
Int. Ed. 2004, 43, 6363. (d) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen,
K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119.
(10) Palermo, V.; Liscio, A.; Gentilini, D.; Nolde, F.; Mu¨llen, K.; Samori, P.
Small 2007, 3, 161.
(11) (a) Kim, W.; Choi, C. H.; Shim, M.; Li, Y.; Wang, D.; Dai, H. Nano
Lett. 2002, 2, 703. (b) Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.;
Gates, B.; Yin, Y.; Kim, F.; Yan, H. AdV. Mater. 2003, 15, 353.
(12) Paramonov, S. E.; Jun, H.; Hartgerink, J. D. J. Am. Chem. Soc. 2006,
128, 7291-7298.
(13) (a) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684.
(b) Genson, K. L.; Holzmueller, J.; Ornatska, M.; Yoo, Y.-S.; Par, M.-
H.; Lee, M.; Tsukruk, V. V. Nano Lett. 2006, 6, 435. (c) Zubarev, E. R.;
Sone, E. D.; Stupp, S. I. Chem.sEur. J. 2006, 12, 7313-7327.
(14) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.;
Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen,
S. B.; Higgins, J. B.; Schlenke, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
(15) (a) Lemaur, V.; da Silva Filho, D. A.; Coropceanu, V.; Lehmann, M.;
Geerts, Y.; Piris, J.; Debije, M. G.; van de Craats, A. M.; Senthilkumar,
K.; Siebbeles, L. D. A.; Warman, J. M.; Bredas, J.-L.; Cornil, J. J. Am.
Chem. Soc. 2004, 126, 3271. (b) Crispin, X.; Cornil, J.; Friedlein, R.;
Okudaira, K. K.; Lemaur, V.; Crispin, A.; Kestemont, G.; Lehmann, M.;
Fahlman, M.; Lazzaroni, R.; Geerts, Y.; Wendin, G.; Ueno, N.; Bredas,
J.-L.; Salaneck, W. R. J. Am. Chem. Soc. 2004, 126, 11889.
The extended π-π stacking along the long axis of the nanobelt
would enable efficient long-range charge migration due to the
effective intermolecular π-electron delocalization15 and thus allow
increasing the electrical conductivity of the nanobelt through
external charge doping. Figure 3 shows the current-voltage (I-
V) measurement of a single nanobelt in the presence and absence
of hydrazine vapor, a strong reducing reagent that is capable of
donating an electron into the nanobelt through ground-state redox
reaction (hydrazine, E° +0.43 V, vs SCE; PTCDI E° -0.59 V,
ox
red
vs SCE). Under an applied bias, the doped electrons will rapidly
JA071903W
9
J. AM. CHEM. SOC. VOL. 129, NO. 23, 2007 7235