Formic Acetic Anhydride in the Gas Phase
J. Phys. Chem., Vol. 100, No. 28, 1996 11629
References and Notes
TABLE 12: Best Fitting Geometriesa (Å and deg) of FAA
and FA
(1) Wu, G.; Shlykov, S.; Van Alsenoy, C.; Geise, H. J.; Sluyts, E.;
Van der Veken, B. J. J. Phys. Chem. 1995, 99, 8589.
(2) Wu, G.; Shlykov, S.; Van Alsenoy, C.; Geise, H. J.; Sluyts, E.;
Van der Veken, B. J. J. Am. Chem. Soc., submitted.
(3) IUPAC(1974). Nomenclature of Organic Chemistry, Section E:
Stereochemistry, Recommendations; Pergamon Press: Oxford, 1974.
(4) Strazzolini, P.; Giumanini, A. G.; Cauci, S. Tetrahedron 1990, 46,
1081.
FAA (this work)
rR° rg
FA (ref 1)
FAAb
(ref 5)
rR°
rg
C(2)dO(3)
C(8)dO(9)
1.192 1.195
1.181 1.187
1.377 1.380
1.375 1.380
1.497 1.500
1.055 1.082
1.054 1.069
1.195
1.195
1.397
1.397
1.495
1.10
1.193 1.196
1.180 1.189
1.374 1.378
1.394 1.397
C(2)-O(1)
C(8)-O(1)
(5) Vledder, H. J.; Mijlhoff, F. C.; Van Well, F. P.; Dofferhoff, G. M.
T.; Leyte, J. C. J. Mol. Struct. 1971, 9, 25.
C(2)-C(4)
C(8)-H(10)
1.078 1.105
(6) Vledder, H. J.; Mijlhoff, F. C.; Leyte, J. C. J. Mol. Struct. 1971,
10, 57.
(7) Geise, H. J.; Pyckhout, W. In Stereochemical Application of Gas
Phase Electron Diffraction; Hargittai, I., Hargittai, M., Eds.; VCH Publish-
ers: Deerfield Beach, FL, 1988; Vol. I, Chapter 10.
(8) Van Hemelijk, D.; Van der Enden, L.; Geise, H. J.; Sellers, H. L.;
Scha¨fer, L. J. Am. Chem. Soc. 1980, 102, 2189.
(9) Klimkowski, V. J.; Ewbank, J. D.; Van Alsenoy, C.; Scarsdale, J.
N.; Scha¨fer, L. J. Am. Chem. Soc. 1982, 104, 1476.
(10) Pyckhout, W.; Van Alsenoy, C.; Geise, H. J.; Van der Veken, B.;
Coppens, P.; Traetteberg, M. J. Mol. Struct. 1986, 147, 85.
(11) Peng, Z.; Shlykov, S.; Van Alsenoy, C.; Geise, H. J.; Van der
Veken, B. J. J. Phys. Chem. 1995, 99, 10201.
(12) Schijf, R.; Stevens, W. Recl. TraV. Chim. Pays-Bas 1966, 85, 627.
(13) Noe, E. A.; Raban, M. J. J. Chem. Soc., Chem. Commun. 1974,
479.
C(4)-H
1.10
C(2)-O(1)-C(5)
O(3)dC(2)-O(1)
O(3)dC(2)-C(4)
O(1)-C(2)-C(4)
O(9)dC(8)-O(1)
O(9)dC(8)-H(10)
O(1)-C(8)-H(10)
C(2)-C(4)-H
O(3)dC(2)-O(1)-C(8)
119.8
113.2
122.4
125.4
112.1
118.0
122.0
120.0
109
118.6
124.2
122.4
127.4
110.2
121.7
120.4
117.9
109.1
0.0
120.8
122.9
116.3
45.6
159.2
180.0
0.0
180.0
O(9)dC(8)-O(1)-C(2) 180.0
H(5)-C(4)-C(2)-O(1) 180.0
a Individual CO/CC lengths have an estimated accuracy of 0.008
Å; individual CH lengths, of 0.15 Å. Individual valence angles in-
volving heavy atoms have an estimated accuracy of 0.5; those involving
H atoms have an accuracy of 1°. b rg bond lengths, rR angles.
(14) Tamagawa, K.; Iijima, T.; Kimura, M. J. Mol. Struct. 1976, 30,
243.
(15) Van Loock, J. F.; Van den Enden, L.; Geise, H. J. J. Phys. E: Sci.
Instrum. 1983, 16, 255.
(16) Forster, H. R. J. Appl. Phys. 1970, 41, 5344.
(17) Ross, A. W.; Fink, M.; Hilderbrandt, R. International Tables for
Crystallography; Kluwer Academic Publishers: Dordrecht, 1992; Vol. 4,
p 245.
Self-Consistent Molecular Model: Conclusions
It was shown that in the gas phase at room temperature the
mixed formic acetic anhydride, FAA, exists in the planar
(sp,ap) conformation, just as formic anhydride, FA. The
conformation is the result of an attractive H(formyl)‚‚‚O(3)
interaction present in both molecules, which also causes those
molecules to be rigid to almost the same degree. Furthermore,
the interaction was identified1 as one of the reasons that FA is
easily decomposed by heat into carbon monoxide and carboxylic
acid. Hence, FAA and other open chain mixed formic
anhydrides should and indeed do split off CO easily.12 Also,
Table 12 shows that, with the possible exception of C(8)-O(1),
the geometrical parameters of FA are equal within experimental
error to those of FA. The absence of a H‚‚‚O interaction gives
acetic anhydride (AA) very different properties: AA executes
large amplitude skeletal vibrations which can be represented
by a mixture of (sp,ac) and nonplanar (sp,sp) forms. Moreover,
the molecule is thermally stable. The diversity in conforma-
tional behavior also causes the infrared intensity ratio I(ν6)/
I(ν5) to be 1.3 for FAA and 1.9 for FA,43 compared to 0.85 for
AA.2 In addition, the ratio of AA changes going from the
gaseous to the liquid state; those of FAA and FA do not.
Obviously, also some dissimilarities exist between FAA and
FA. The major difference is that a smaller electronic interaction
occurs between the acetyl and formyl moieties of FAA than
between the two formyl moieties of FA. The most conspicuous
result is the small split of 16 cm-1 in FAA. It follows that
similar small splittings should occur in anhydrides RCOOCHO
(R ) alkyl), which is indeed observed.12
(18) Tavard, C.; Nicolas, D.; Rouault, M. J. Chim. Phys. Chim. Biol.
1960, 40, 1686.
(19) Van den Enden, L.; Van Laere, E.; Geise, H. J.; Mijlhoff, F. C.;
Spelbos, A. Bull. Soc. Chim. Belg. 1976, 85, 735.
(20) Pulay, P. Mol. Phys. 1969, 17, 197.
(21) Pulay, P. Theor. Chim. Acta 1979, 50, 299.
(22) Pulay, P. In Modern Theoretical Chemistry; Scha¨fer, H. F., III,
Ed.; Plenum Press: New York, 1977; Vol. 4, p 154 ff.
(23) Van Alsenoy, C.; Peeters, A. J. Mol. Struct. (THEOCHEM.) 1993,
286, 19.
(24) Van Alsenoy, C. J. Comput. Chem. 1988, 9, 620.
(25) Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E. J. Am. Chem. Soc.
1979, 101, 2550.
(26) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54,
724.
(27) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56,
2257.
(28) Scha¨fer, L. J. Mol. Struct. 1983, 100, 51.
(29) Oyanagi, K.; Kuchitsu, K. Bull. Chem. Soc. Jpn. 1978, 51, 2237.
(30) Popelier, P.; Lenstra, A. T. H.; Van Alsenoy, C.; Geise, H. J. J.
Struct. Chem. 1991, 2, 3.
(31) Wilson, E. B.; Decius, J. C.; Cross, P. C. In Molecular Vibrations,
the Theory of Infrared and Raman Vibrational Spectroscopy; McGraw-
Hill Book Co.: New York, 1955; Chapter 9.
(32) Califano, S. Vibrational States; Wiley-Intersciences: New York,
1976.
(33) Pulay, P.; Fogarasi, G.; Boggs, J. E. J. Chem. Phys. 1981, 74, 3993.
(34) Von Carlowitz, S.; Zeil, W.; Pulay, P.; Boggs, J. E. J. Mol. Struct.
1982, 30, 113.
(35) Rosas, R. L.; Liefooghe, H. H.; Laane, J.; Van der Veken, B. J. J.
Raman Spectrosc. 1993, 24, 143.
(36) Bellamy, L. J.; Connelly, B. R.; Philpotts, A. R.; Williams, R. L.
Z. Elektrochem. 1960, 64, 563.
(37) Mirone, P.; Chiorboli, P. Spectrochim. Acta 1962, 18, 1425.
(38) Konarski, J. J. Mol. Struct. 1972, 13, 45.
(39) Bellamy, L. J. The Infrared Spectra of Complex Molecules, 2nd
ed.; Chapman and Hall: London, 1980; Vol. II, pp 144, 145.
(40) Gans, P. Vibrating Molecules, an Introduction to the Interpretation
of Infrared and Raman Spectra; Chapman and Hall: London, 1975; Chapter
7.
(41) De Smedt, J.; Vanhouteghem, F.; Van Alsenoy, C.; Geise, H. J.;
Scha¨fer, L. J. Mol. Struct. (THEOCHEM) 1992, 259, 289.
(42) Hamilton, W. C. In Statistics in Physical Science; Estimation,
Hypothesis Testing and Least-Squares; Ronald Press Co.: New York, 1964.
(43) Ku¨hne, H.; Ha, T. -K.; Meyer, R.; Gu¨nthard, Ho. H. J. Mol.
Spectrosc. 1979, 77, 251.
Acknowledgment. C.V.A. acknowledges support as a Senior
Research Associate by the Belgian National Science Foundation,
N.F.W.O. This text also presents research results of the Belgian
Programme on Interuniversity Attraction Poles initiated by the
Belgian State (Prime Minister’s Office), Science Policy Pro-
gramming. Scientific responsibility, however, is assumed by
the authors.
Supporting Information Available: Primary electron dif-
fraction data (2 pages). Ordering information is given on any
current masthead page.
JP9607982