3072
H. Lee et al. / Bioorg. Med. Chem. Lett. 11 (2001) 3069–3072
5. Kato, K.; Cox, A. D.; Hisaka, M. M.; Graham, S. M.;
Buss, J. E.; Der, C. J. J. E. Proc. Natl. Acad. Sci. U.S.A. 1992,
89, 6403.
6. Der, C. J.; Cox, A. D. Cancer Cells 1991, 3, 331.
7. Reiss, Y.; Goldstein, J. L.; Seabra, M. C.; Casey, P. L.;
Brown, M. C. Cell 1990, 62, 81.
8. Clarke, S.; Vogel, J. P.; Deshenes, R. J.; Stock, J. J. E.
Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 4643.
9. Gibbs, J. B. Cell 1991, 65, 1.
10. Kohl, N. E.; Mosser, S. D.; deSolms, J.; Giuliani, E. A.;
Pompliano, D. L.; Graham, S. L.; Smith, R. L.; Scolinick,
E. M.; Oliff, A.; Gibbs, J. B. Science 1993, 260, 1934.
11. James, J. L.; Goldstein, J. L.; Brown, M. S.; Rawsen, T. E.;
Somers, T. C.; McDowell, R. S.; Crowley, C. W.; Lucas, B. K.;
Levinson, A. D.; Marsters, J. C., Jr. Science 1993, 260, 1937.
12. Kohl, N. E.; Wilson, F. R.; Mosser, S. D.; Giuliani, E. A.;
deSolms, S. J.; Conner, M. W.; Anthony, N. J.; Holtz, W. J.;
Gomez, R. P.; Lee, T.-J.; Smith, R. L.; Graham, S. L.; Hart-
man, G. D.; Gibbs, J. B.; Oliff, A. Proc. Natl. Acad. Sci.
U.S.A. 1994, 91, 9141.
13. Kohl, N. E.; Omer, C. A.; Conner, M. W.; Anthony, N. J.;
Davide, J. P.; deSolms, S. J.; Giuliani, E. A.; Gomez, R. P.;
Graham, S. L.; Hamilton, K.; Handt, L. K.; Hartman, G. D.;
Koblan, K. S.; Kral, A. M.; Miller, P. J.; Mosser, S. D.;
O’Neill, T. J.; Shaber, M. D.; Gibbs, J. B.; Oliff, A. Nat. Med.
1995, 1, 792.
14. Mangues, R.; Corral, T.; Kohl, N. E.; Symmans, W. F.;
Lu, S.; Malumbres, M.; Gibbs, J. B.; Oliff, A.; Pellicer, A.
Cancer Res. 1998, 58, 1253.
15. Nigam, M.; Seong, C. M.; Qian, Y.; Hamilton, A.; Sebti,
S. M. J. Biol. Chem. 1993, 39, 353.
16. Vasudevan, A.; Qian, Y.; Vogt, A.; Blackovich, M. A.;
Ohkanda, J.; Sebti, S. M.; Hamilton, A. D. J. Med. Chem.
1999, 42, 1333.
17. Sun, J.; Blaskovich, M. A.; Knowels, D.; Qian, Y.;
Ohkanda, J.; Bailey, R. D.; Hamilton, A. D.; Sebti, S. M.
Cancer Res. 1999, 59, 4919.
enzyme (16.6 nM), [3H]-farnesylpyrophosphate (FPP) (0.3
mM, 20Ci/mmol, Dupont NEN) and serially diluted test com-
pounds at given concentration in the buffer containing 50 mM
HEPES, pH 7.4, 250 mM MgCl2, 25 mM KCl, 0.5% N-octyl-
glucoside, 50 mM ZnCl2, and 10 mM DTT. The enzyme reac-
tions were then quenched by adding the solution containing
10% HCl in absolute ethanol. The [3H] FPP-incorporated ras
was collected by filter binding (25 mm Glass fiber
filter, Whatman) and quantitated by scintillation counter.
Similarly, inhibitory activity of GGTase I enzyme was deter-
mined using Rac protein (40 nM), GGTase I (133 nM) and
[3H]-geranylgeranyl pyrophosphate (GGPP, 15 Ci/mmol,
Amersham).
IC50: the concentration of compound required to reduce
the enzyme-catalyzed incorporation of [3H]FPP or [3H]GGPP
into the corresponding substrate proteins by 50%.
For anchorage-independent soft-agar assay, human tumor
cell lines were adapted in DMEM media (DMEM, Gib-
coBRL) containing 10% fetal bovine serum (FBS, GibcoBRL)
in advance for 2–3 days after thawing. 0.5% bottom agar
containing 5 mL of 1% agar (Sigma), 5 mL of 2Âconcn of
DMEM having 20% FBS and 50 mL of 200Â concd of test
compounds was dispensed 1 mL/well into 6 well plate and
solidified for 1 h at room temperature. Subsequently, 0.33%
top agar containing 1.5 mL of 2Âconcn of DMEM and 23 mL
of 200Âconcn of test compounds was prepared and cooled in
sol state to 30 ꢀC. Then, 1.5 mL of human tumor cells (2–
5Â103 cells/mL) was added to the top agar and mixed well.
The top agar mixture was dispensed by 1.2 mL/well onto the
solidified bottom agar. After two weeks incubation in humi-
dified CO2 incubator, the number of colonies formed were
counted under the microscope. GI50 values were then quanti-
tated from the dose–response curves by plotting the percen-
tage of growth of colonies against the log10 of the
corresponding concentration for each cell line.
23. Fukazawa, H.; Nakano, S.; Mizuno, S.; Uehara, Y. Int. J.
Cancer 1996, 67, 876.
18. Ciccarone, T. M.; MacTough, S. C.; Williams, T. M.;
Dinsmore, C. J.; O’Neill, T. J.; Shah, D.; Culberson, J. C.;
Koblan, K. S.; Kohl, N. E.; Gibbs, J. B.; Oliff, A.; Graham,
S. L.; Hartman, G. D. Biorg. Med. Chem. Lett. 1999, 9, 1991.
19. Lee, H. I.; Koh, J. S.; Lee, J. H.; Jung, W. H., Shin, Y. S.;
Chung, H. H.; Kim, J. H.; Ro, S. G.; Choi, T. S.; Jeong, S. W.;
Lee, S. H.; Kim, K. W. WO9928315, 9938862, 9905117, 1999
and 0064891, 2000.
20. Artico, M.; Di Santo, R.; Costi, R.; Massa, S.; Retico, A.;
Artico, M.; Apuzzo, G.; Simonetti, G.; Strippoli, V. J. Med.
Chem. 1995, 38, 4223.
21. van Leusen, A. M.; Siderius, H.; Hoogenboom, B. E.; van
Leusen, D. Tetrahedron Lett. 1972, 5337.
22. The enzyme inhibitory assay was done by a modification
of the procedure described by: Moores, S. L., Schaber, M. D.,
Mosser, S. D., Rands, E., O’Hara, M. B., Garsky, V. M.,
Marchall, M. S., Pompliano, D. L., Gibbs, J. B. J. Biol. Chem.
1991 266, 14603. Briefly, ras proteins (20 mM of H-Ras, 10 mM
of K-Ras) were incubated for 30 min at 37oC with FTase
24. In vivo efficacy studies were carried out in xenograft
models. Animals (athymic female nude mice; BALB/c
AnNCrj-nu/nu; Charles River Laboratories, Japan; 5–7 weeks
old) were subcutaneously inoculated with either HCT116 or
EJ tumor cells on the intrascapular region at least 1 week of
acclimation period after arrival from vendor. The size of
inoculum for both tumor cell lines was 107 cells per animal.
Once palpable, the size of tumor was measured in three
dimensions every three days and the volume was calculated by
using the equation, V=1/6ÂpÂLÂWÂH (V, volume; L,
length; W, width; H, height). When the tumor reached a
volume of around 100 mm3, animals were randomly divided
into control or treatment groups (8 animals/group) and it was
assigned as Day 0. Treatment with compound 2 at the dose
level of 20, 40 or 60 mg/kg was initiated on Day 1 and con-
tinued twice a day (bid) by gastric gavage for 21 days. Vehicle
control received 0.9% saline. Data from tumor with ulcer were
not included in the calculation of group mean. Student’s t-test
was used for statistical analysis.