Organic Letters
Letter
(10) (a) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew.
Chem., Int. Ed. 2013, 52, 2207. (b) Yoshino, T.; Ikemoto, H.; Matsunaga,
S.; Kanai, M. Chem. - Eur. J. 2013, 19, 9142. (c) Andou, T.; Saga, Y.;
Komai, H.; Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. 2013, 52,
3213. (d) Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth.
Catal. 2014, 356, 1491. (e) Ikemoto, H.; Yoshino, T.; Sakata, K.;
Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424.
(f) Yamamoto, S.; Saga, Y.; Andou, T.; Matsunaga, S.; Kanai, M. Adv.
Synth. Catal. 2014, 356, 401. (g) Suzuki, Y.; Sun, B.; Sakata, K.; Yoshino,
T.; Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. 2015, 54, 9944.
(11) (a) Ilies, L.; Chen, Q.; Zeng, X.; Nakamura, E. J. Am. Chem. Soc.
2011, 133, 5221. (b) Chen, Q.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc.
2011, 133, 428. (c) Chen, Q.; Ilies, L.; Yoshikai, N.; Nakamura, E. Org.
Lett. 2011, 13, 3232.
(12) (a) Grigorjeva, L.; Daugulis, O. Angew. Chem., Int. Ed. 2014, 53,
10209. (b) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4684.
(c) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4688. (d) Grigorjeva,
L.; Daugulis, O. Org. Lett. 2015, 17, 1204.
(13) (a) Yu, D. G.; Gensch, T.; de Azambuja, F.; Vasquez-Cespedes, S.;
Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722. (b) Zhao, D.; Kim, J. H.;
Stegemann, L.; Strassert, C. A.; Glorius, F. Angew. Chem., Int. Ed. 2015,
54, 4508. (c) Gensch, T.; Vasquez-Cespedes, S.; Yu, D.-G.; Glorius, F.
Org. Lett. 2015, 17, 3714.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Details on experimental procedures, characterization data
of all compounds and copies of NMR spectra (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research is supported by the SERB (SB/FT/CS-065/2013),
EMR/2015/30, and CSIR-NCL. V.G.L. thanks CSIR and G.J.
thanks UGC for fellowships. E.B. thanks S. Sen for his
suggestions.
(14) (a) Gao, K.; Lee, P.-S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc.
2010, 132, 12249. (b) Ding, Z.; Yoshikai, N. Org. Lett. 2010, 12, 4180.
(c) Lee, P. S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. 2011, 133, 17283.
(d) Gao, K.; Yoshikai, N. J. Am. Chem. Soc. 2013, 135, 9279. (e) Lee, P.-
S.; Yoshikai, N. Org. Lett. 2015, 17, 22. (f) Yang, J.; Seto, Y. W.; Yoshikai,
N. ACS Catal. 2015, 5, 3054.
(15) (a) Zhang, L. B.; Hao, X. Q.; Zhang, S. K.; Liu, Z. J.; Zheng, X. X.;
Gong, J. F.; Niu, J. L.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 272.
(b) Zhang, L.-B.; Hao, X.-Q.; Liu, Z.-J.; Zheng, X.-X.; Zhang, S.-K.; Niu,
J.-L.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 10012.
(16) (a) Song, W.; Ackermann, L. Angew. Chem., Int. Ed. 2012, 51,
8251. (b) Punji, B.; Song, W.; Shevchenko, G. A.; Ackermann, L. Chem. -
Eur. J. 2013, 19, 10605. (c) Li, J.; Ackermann, L. Angew. Chem., Int. Ed.
2015, 54, 8551. (d) Moselage, M.; Sauermann, N.; Koeller, J.; Liu, W.;
Gelman, D.; Ackermann, L. Synlett 2015, 26, 1596. (e) Ma, W.;
Ackermann, L. ACS Catal. 2015, 5, 2822. (f) Li, J.; Ackermann, L. Angew.
Chem., Int. Ed. 2015, 54, 3635. (g) Sauermann, N.; Gonzalez, M. J.;
Ackermann, L. Org. Lett. 2015, 17, 5316. (h) Ma, W.; Ackermann, L.
ACS Catal. 2015, 5, 2822. (i) Li, J.; Ackermann, L. Chem. - Eur. J. 2015,
21, 5718. (j) Moselage, M.; Sauermann, N.; Richter, S. C.; Ackermann,
L. Angew. Chem., Int. Ed. 2015, 54, 6352.
REFERENCES
■
(1) For recent reviews: (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A.
Chem. Rev. 2010, 110, 624. (b) Ackermann, L. Chem. Commun. 2010, 46,
4866. (c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(d) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712.
(e) Ackermann, L. Chem. Rev. 2011, 111, 1315. (f) Wencel-Delord, J.;
Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.
(g) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112,
5879. (h) Collins, K. D.; Glorius, F. Nat. Chem. 2013, 5, 597. (i) Zhang,
X.-S.; Chen, K.; Shi, Z.-J. Chem. Sci. 2014, 5, 2146.
(2) Selected reviews: (a) Kulkarni, A. A.; Daugulis, O. Synthesis 2009,
4087. (b) Nakamura, E.; Yoshikai, N. J. Org. Chem. 2010, 75, 6061.
(c) Nakao, Y. Chem. Rec. 2011, 11, 242. (d) Yoshikai, N. Synlett 2011,
2011, 1047. (e) Yamaguchi, J.; Muto, K.; Itami, K. Eur. J. Org. Chem.
2013, 2013, 19. (f) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed.
2013, 52, 11726. (g) Ackermann, L. J. Org. Chem. 2014, 79, 8948.
(h) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
(i) Yoshikai, N. ChemCatChem 2015, 7, 732.
(3) Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry:
Chemistry, Biology and Material Science; Wiley-VCH: Weinheim, 2005.
(4) (a) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46. (b) Negishi,
E.-i.; Anastasia, L. Chem. Rev. 2003, 103, 1979.
(5) (a) Seregin, I. V.; Ryabova, V.; Gevorgyan, V. J. Am. Chem. Soc.
2007, 129, 7742. (b) Tobisu, M.; Ano, Y.; Chatani, N. Org. Lett. 2009,
11, 3250. (c) Gu, Y.; Wang, X. Tetrahedron Lett. 2009, 50, 763. (d) Kim,
S. H.; Park, S. H.; Chang, S. Tetrahedron 2012, 68, 5162. (e) Ano, Y.;
Tobisu, M.; Chatani, N. Synlett 2012, 23, 2763. (f) Feng, C.; Loh, T.-P.
Angew. Chem., Int. Ed. 2014, 53, 2722. (g) Xie, F.; Qi, Z.; Yu, S.; Li, X. J.
Am. Chem. Soc. 2014, 136, 4780.
(6) (a) Shang, M.; Wang, H.-L.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am.
Chem. Soc. 2014, 136, 11590. (b) Liu, Y.-J.; Liu, Y.-H.; Yin, X.-S.; Gu, W.-
J.; Shi, B.-F. Chem. - Eur. J. 2015, 21, 205.
(7) (a) Liu, Y.-J.; Liu, Y.-H.; Yan, S.-Y.; Shi, B.-F. Chem. Commun. 2015,
51, 6388. (b) Liu, Y.-H.; Liu, Y.-J.; Yan, S.-Y.; Shi, B.-F. Chem. Commun.
2015, 51, 11650. (c) Yi, J.; Yang, L.; Xia, C.; Li, F. J. Org. Chem. 2015, 80,
6213. (d) Landge, V. G.; Shewale, C. H.; Jaiswal, G.; Sahoo, M. K.;
Midya, S. P.; Balaraman, E. Catal. Sci. Technol. 2016, DOI: 10.1039/
(8) For selected reviews, see: (a) Rouquet, G.; Chatani, N. Angew.
Chem., Int. Ed. 2013, 52, 11726. (b) Corbet, M.; De Campo, F. Angew.
Chem., Int. Ed. 2013, 52, 9896. (c) Daugulis, O.; Roane, J.; Tran, L. D.
Acc. Chem. Res. 2015, 48, 1053. (d) Castro, L. C. M.; Chatani, N. Chem.
Lett. 2015, 44, 410. (e) Rit, R. K.; Yadav, M. R.; Ghosh, K.; Sahoo, A. K.
Tetrahedron 2015, 71, 4450.
(17) (a) Pawar, A. B.; Chang, S. Org. Lett. 2015, 17, 660. (b) Patel, P.;
Chang, S. ACS Catal. 2015, 5, 853.
(18) (a) Hummel, J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015, 137, 490.
(b) Hummel, J. R.; Ellman, J. A. Org. Lett. 2015, 17, 2400.
(19) Sen, M.; Kalsi, D.; Sundararaju, B. Chem. - Eur. J. 2015, 21, 15529.
(20) (a) Zhang, J.; Chen, H.; Lin, C.; Liu, Z.; Wang, C.; Zhang, Y. J. Am.
Chem. Soc. 2015, 137, 12990. (b) Zhang, Z.-Z.; Liu, B.; Wang, C.-Y.; Shi,
B.-F. Org. Lett. 2015, 17, 4094.
(21) Further screening using common solvents, including apolar
arenes (o-xylene and PhCl) or polar DMF, DMSO, DMA, DCE, and
CF3CH2OH, proved ineffective in the C−H bond alkynylation.
(22) Other bases such as NaOAc, CsOAc, Li2CO3, Na2CO3, K2CO3,
and Cs2CO3 proved ineffective, and less formation (up to ∼30%) of 3a
was observed under optimal conditions.
(23) Despite the use of economical cobalt catalysts, often an expensive
silver salt is required for reoxidation of Co(II) to Co(III) and in situ
generation of an alkynyl radical. Other oxidants such as Ag2O,
AgSO2CF3, AgOAc, Ag3PO4, and AgOC(O)CF3 did not improve the
yield of the alkynylated product 3a under optimal conditions (see the
Table 1, entries 8−9).
(24) Compound 3e′ (yield = 45%) was prepared under condition B.
(26) (a) Fang, G.; Bi, X. Chem. Soc. Rev. 2015, 44, 8124. (b) Wu, X.;
Yang, K.; Zhao, Y.; Sun, H.; Li, G.; Ge, H. Nat. Commun. 2015, 6, 6462.
(9) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2015, 6, 498.
D
Org. Lett. XXXX, XXX, XXX−XXX