Organic Letters
Letter
Pederson (Materia) for a sample of the Hoveyda−Grubbs
catalyst. This work was supported by the National Science
Foundation through Grants CHE-1012839 and CHE-1300702.
(13) (a) Kubota, K.; Leighton, J. L. Angew. Chem., Int. Ed. 2003, 42,
46−948. (b) Coleman, R. S.; Gurrala, S. R.; Mitra, S.; Raao, A. J. Org.
9
Chem. 2005, 70, 8932−8941.
(14) Diver, S. T.; Kulkarni, A. A.; Clark, D. A.; Peppers, B. P. J. Am.
Chem. Soc. 2007, 129, 5832−5833.
REFERENCES
(15) Clark, J. R.; Diver, S. T. Org. Lett. 2011, 13, 2896−2899.
■
(
16) Dinger, M. B.; Mol, J. C. Organometallics 2003, 22, 1089−1095.
(
1) Isolation: (a) Ishibashi, M.; Takahashi, M.; Kobayashi, J. i. J. Org.
(17) For instance, heating at 60 °C gave dienol products that were
Chem. 1995, 60, 6062−6066. Reviews: (b) Kobayashi, J. i.; Tsuda, M.
Natural Product Reports 2004, 21, 77−93. (c) Kobayashi, J. i.; Kubota,
T. J. Nat. Prod. 2007, 70, 451−460. (d) Kobayashi, J. i. J. Antibiot.
008, 61, 271−284. (e) Fu
2) (a) Williams, D. R.; Myers, B. J.; Mi, L. Org. Lett. 2000, 2, 945−
48. (b) Williams, D. R.; Myers, B. J.; Mi, L. Org. Lett. 2013, 15, 2070.
c) Trost, B. M.; Papillon, J. P. N. J. Am. Chem. Soc. 2004, 126,
3618−13619. (d) Trost, B. M.; Papillon, J. P. N.; Nussbaumer, T. J.
Am. Chem. Soc. 2005, 127, 17921−17937. (e) Hwang, M.-h.; Han, S.-
J.; Lee, D.-H. Org. Lett. 2013, 15, 3318−3321. (f) Williams, D. R.;
Myers, B. J.; Mi, L.; Binder, R. J. J. Org. Chem. 2013, 78, 4762−4778.
g) Chakraborty, T. K.; Das, S. Tetrahedron Lett. 2001, 42, 3387−
390.
3) Recent reviews: (a) Li, J.; Lee, D. In Handbook of Metathesis, 2nd
dark colored, presumably due to greater catalyst decomposition at
higher temperatures.
(18) (a) Kuhn, K. M.; Bourg, J.-B.; Chung, C. K.; Virgil, S. C.;
2
(
9
(
̈
rstner, A. Isr. J. Chem. 2011, 51, 329−345.
Grubbs, R. H. J. Am. Chem. Soc. 2009, 131, 5313−5320. (b) Vorfalt,
T.; Wannowius, K.-J.; Plenio, H. Angew. Chem., Int. Ed. 2010, 49,
5
(
533−5536.
19) Decreased loading of Hov2 resulted in lower product yields.
1
(20) Galan, B. R.; Kalbarczyk, K. P.; Szczepankiewicz, S.; Keister, J.
B.; Diver, S. T. Org. Lett. 2007, 9, 1203−1206.
(21) (a) Michaelis, S.; Blechert, S. Org. Lett. 2005, 7, 5513.
Accelerating effect of allylic alcohols: (b) Hoye, T. R.; Zhao, H. Org.
Lett. 1999, 1, 1123. (c) Imahori, T.; Ojima, H.; Yoshimura, Y.;
Takahata, H. Chem.Eur. J. 2008, 14, 10762−10771.
(
3
(
ed.; Grubbs, R. H., O’Leary, D. J., Eds.; Wiley-VCH: Weinheim, 2015;
Vol. 2, pp 381−444. (b) Diver, S. T., Clark, J. R. In Comprehensive
NOTE ADDED AFTER ASAP PUBLICATION
Scheme 4 was corrected on June 29, 2015.
■
̈
Organic Synthesis, 2nd ed.; Furstner, A., Ed.; Pergamon: London, 2014;
Vol. 5, pp 1302−1356. (c) Diver, S. T. Science of Synthesis 2009, 46.3,
9
(
(
7−146.
4) Jecs, E.; Diver, S. T. Tetrahedron Lett. 2014, 55, 4933−4937.
5) (a) Kim, C. H.; An, H. J.; Shin, W. K.; Yu, W.; Woo, S. K.; Jung,
S. K.; Lee, E. Angew. Chem., Int. Ed. 2006, 45, 8019−8021. (b) Ko, H.
M.; Lee, C. W.; Kwon, H. K.; Chung, H. S.; Choi, S. Y.; Chung, Y. K.;
Lee, E. Angew. Chem., Int. Ed. 2009, 48, 2364−2366.
(
6) Select examples of ring-closing EYM used in total synthesis
small rings): (a) Kinoshita, A.; Mori, M. J. Org. Chem. 1996, 61,
356−8357. (b) Aggarwal, V. K.; Astle, C. J.; Rogers-Evans, M. Org.
(
8
Lett. 2004, 6, 1469−1471. (c) Brenneman, J. B.; Martin, S. F. Org. Lett.
2
004, 6, 1329−1331. (d) Evans, M. A.; Morken, J. P. Org. Lett. 2005,
7
, 3371−3373. (e) Kummer, D. A.; Brenneman, J. B.; Martin, S. F.
Org. Lett. 2005, 7, 4621−4623. (f) Movassaghi, M.; Piizzi, G.; Siegel,
D. S.; Piersanti, G. Angew. Chem., Int. Ed. 2006, 45, 5859−5863.
(
g) Paquette, L. A.; Lai, K. W. Org. Lett. 2008, 10, 2111−2113. Study
on ring closure mode: (h) Hansen, E. C.; Lee, D. J. Am. Chem. Soc.
2
004, 126, 15074−15080. Macrocyclization ring-closing EYM in total
synthesis: (i) Layton, M. E.; Morales, C. A.; Shair, M. D. J. Am. Chem.
Soc. 2002, 124, 773−775.
(
7) (a) Fu
007, 46, 5545−5548. (b) Fu
Takahashi, Y.; Kubota, T.; Kobayashi, J. i. Chem.Eur. J. 2009, 15,
011−4029.
8) Gao, X.; Woo, S. K.; Krische, M. J. J. Am. Chem. Soc. 2013, 135,
223−4226.
9) For instance, despite attempts to get an enyne metathesis to work
̈
rstner, A.; Larionov, O.; Flu
̈
gge, S. Angew. Chem., Int. Ed.
2
̈
rstner, A.; Flu
̈
gge, S.; Larionov, O.;
4
(
4
(
successfully in their amphidinolide N synthesis, ultimately the authors
had to redesign their route; see: Nicolaou, K. C.; Brenzovich, W. E.;
Bulger, P. G.; Francis, T. M. Org. Biomol. Chem. 2006, 4, 2119.
(
10) Grubbs classifies these as types I−IV, with types I and II alkenes
reactive enough to initiate and give alkene metathesis. See:
a) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J.
(
Am. Chem. Soc. 2003, 125, 11360−11370. (b) O’Leary, D. J.; O’Neil,
G. W. In Handbook of Metathesis, 2nd ed., Vol. 2; Grubbs, R. H.,
O’Leary, D. J., Eds.; Wiley-VCH: Weinheim, 2015.
(
11) (a) Galan, B. R.; Giessert, A. J.; Keister, J. B.; Diver, S. T. J. Am.
Chem. Soc. 2005, 127, 5762−5763. DFT studies: (b) Lippstreu, J. J.;
Straub, B. F. J. Am. Chem. Soc. 2005, 127, 7444−7457. (c) Nunez-
Zarur, F.; Solans-Monfort, X.; Rodriguez-Santiago, L.; Pleixats, R.;
Sodupe, M. Chem.Eur. J. 2011, 17, 7506−7520.
(
12) Prepared in six steps from methyl crotonate and TMS acetylene
in 21% overall yield.
D
Org. Lett. XXXX, XXX, XXX−XXX