5
034
J . Org. Chem. 2000, 65, 5034-5036
F a cile Ap p r oa ch to 4-Su bstitu ted
(5H)-F u r a n on es
compounds and the difficult removal of the toxic orga-
notin byproducts. Due to the readily availability and
8
2
environmentally friendly features of boronic acids, the
9
Suzuki coupling reaction came to attract ever-increasing
Min-Liang Yao and Min-Zhi Deng*
attention recently. Because of the readily availability and
the better electrophility of triflates, Suzuki and Miyaura
investigated the palladium-catalyzed cross-coupling reac-
tion of organoboranes and aryl, alkenylboronic acids with
alkenyl, aryl triflates.9 The first Suzuki reaction of
â-tetronic acid triflate with 9-alkyl-9-BBN (yield: 51%)
was adopted by Grigg10 during the total synthesis of (-)-
isoseiridine, and later the reaction of alkenylboronic acid
with â-tetronic acid triflate (yield: 48%) was described
Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, Academia Sinica, 354 FengLin Lu,
Shanghai 200032, China
c
Received February 11, 2000
The 2(5H)-furanone moieties are prevalent in a variety
1
11
of natural products and medicinally important com-
by Honda in the preparation of syributin 1. Appearent-
2
pounds. The compounds containing 2(5H)-furanone moi-
ly, the yields of both reactions were unsatisfactory, and
the further study of the coupling condition in detail was
necessary.
ety have been considering as potential insectcides, fun-
3
gicides, antimicrobial and antitumor agents, etc. There-
fore, in recent years, much attention has been paid to
Considering that the â-tetronic acid triflate could be
prepared by the treatment of the readily available
the preparation of various substituted 2(5H)-furanones.
4
The recent patent about the pharmacological effects of
12
â-tetronic acid with triflic anhydride in the presence of
4
-alkyl-2(5H)-furanones in curing gastric ulcer and gas-
10
Hunig’s base, and in connection with our ongoing
tric hypersecretion actuated us to prepare their ana-
logues.
In contrast with the 3-substituted or 5-substituted
projects relating to the cross-coupling reactions of cyclo-
13
propylboronic acids, we felt it significant to introduce
the stereodefined cyclopropyl function into C-4 position
of 2(5H)-furanones via the coupling reaction of â-tetronic
acid triflate with cyclopropylboronic acids, and develop
a convenient method to prepare 4-cyclopropyl-2(5H)-
furanones, the special alkyl-substituted 2(5H)-furanones,
which might have some potential bioactivity. In this
paper, we wish to disclose our recent study in this
research work.
The reaction of trans-pentylcyclopropylboronic acids
with â-tetronic acid triflate was examined under an argon
atmosphere to optimize the reaction conditions(Table 1).
The reaction condition14 established for cyclopropylbo-
ronic acids with activated alkenyl triflates did make the
expected reaction take place, but the yield was poor
2
4
(5H)-furanones, the problem of the preparation of
-substituted 2(5H)-furanones has not been solved sat-
5
isfactorily yet. In the existing limited methods to 4-sub-
stituted 2(5H)-furanones, the transition metal-catalyzed
6
coupling methodologies occupied the overwhelming ma-
jority.7 Among them, the Stille coupling reaction was
adopted frequently;5,7a-e however, its feasibility was
limited due to the annoying preparation of organotin
*
To whom correspondence should be addressed. Fax: 0086-21-
4166128.
1) (a) Miao, S.-C.; Andersen, R. J . J . Org. Chem. 1991, 56, 6275.
b) Wang, T.-Z.; Pinard, E.; Paquette, L. A. J . Am. Chem. Soc. 1996,
6
(
(
1
6
18, 1309. (c) Paquette, L. A.; Ezquerra, J .; He, W. J . Org. Chem. 1995,
0, 1435. (d) Takayama, H.; Kuwajima, T.; Kitajima, M.; Nonato, M.
(
entry 1). Both the use of additive (entry 2), and the
G.; Aimi, N. Heterocycles 1999, 50, 75. (e) Rodriguez, A. D.; Shi, J .-G.;
Huang, S.-D. J . Org. Chem. 1998, 63, 4425. (f) Xu, L.-P.; Gou, D.; Liu,
J .-S.; Zheng, J .-H.; Koike, K.; J ia, Z.-H.; Nikaido, T. Heterocycles 1999,
1
0
adoption of the reaction conditions used by Grigg (entry
11
3
) and Honda (entry 4) could not improve the yield. The
blank test of â-tetronic acid triflate alone in toluene
solvent at 100 °C in the presence of K PO indicated that
â-tetronic acid triflate was sensitive to the strong base
PO . The reaction carried out in the weaker base KF
2 N aqueous solution) afforded only a trace of desired
5
1, 605.
2) (a) Cerri, A.; Mauri, P.; Mauro, M.; Melloni, P. J . Heterocycl.
(
Chem. 1993, 30, 1581. (b) Tan, L.; Chen, C.-Y.; Larsen, R. D.;
Verhoeven, T. R.; Reider, P. J . Tetrahedron Lett. 1998, 39, 3961. (c)
Vallat, J .-N.; Grossi, P.-J .; Boucherle, A.; Simiand, J . Eur. J . Med.
Chem. 1981, 16, 409.
3
4
K
(
3
4
(3) (a) Brima, T. S. U. S.US 4,968, 817 US Appl. 635,338, 1984;
Chem. Abstr. 1991, 114, 185246. (b) Tanabe, A. J pn. Kokai Tokkyo
Koho J P 63, 211, 276[88, 211, 276], 1988; Chem. Abstr. 1989, 110,
product and the massive â-tetronic acid, this fact sug-
gested that the â-tetronic acid triflate was also sensitive
to the water at 100 °C in the presence of the catalyst
9
4978. (c) Ducharme, Y.; Gauthier, J . Y.; Prasit, P.; Leblanc, Y.; Wang,
Z.; Leger, S.; Therien, M. PCT Int. Appl. WO 95 00, 501, 1995; Chem.
Abstr. 1996, 124, 55954.
(
4) Oomura, Y.; Shiraishi, T.; Takeoka, J . J pn. Kokai Tokkyo Koho
J P 07, 196, 491[95, 196, 491], 1995; Chem. Abstr. 1995, 123, 246850.
(8) (a) Piers, E.; J ean, M.; Marrs, P. S. Tetrahedron Lett. 1987, 28,
5075. (b) Fouquet, E.; Pereyre, M.; Rodriguez, A. J . Org. Chem. 1997,
62, 5242.
(
5) Lattmann, E.; Hoffmann, H. M. R. Synthesis 1996, 155.
(6) (a) For a recent review, see: Knight, D. W. Contemp. Org. Synth.
1
3
994, 1, 287. (b) Marshall, J . A.; Wolf, M. A. J . Org. Chem. 1996, 61,
238. (c) Xiao, W.-J .; Alper, H. J . Org. Chem. 1997, 62, 3422. (d)
(9) For recent reviews, see: (a) Miyaura, N.; Suzuki, A. Chem. Rev.
1995, 95, 2457. and (b) Suzuki, A. J . Organomet. Chem. 1999, 576,
147. (c) Ohe, T.; Miyaura, N.; Suzuki, A. J . Org. Chem. 1993, 58, 2201.
(10) Grigg, R.; Kennewell, P.; Savic, V. Tetrahedron 1994, 50, 5489.
(11) Honda, T.; Mizutani, H.; Kanai, K. J . Org. Chem. 1996, 61,
9374.
Marshall, J . A.; Wolf, M. A. J . Org. Chem. 1997, 62, 367. (e) J oh, T.;
Nagata, H.; Takahashi, S. Inorg. Chim. Acta 1994, 220, 45. (f) Forgione,
P.; Wison, P. D.; Fallis, A. G. Tetrahedron Lett. 2000, 41, 17.
(7) (a) Reginato, G.; Capperucci, A.; Degl’Innocenti, A.; Mordini, A.;
Pecchi, S. Tetrahedron 1995, 51, 2129. (b) Hoffmann, H. M. R.; Gerlach,
K.; Lattmann, E. Synthesis 1996, 164. (c) Hollingworth, G. J .; Sweeney,
J . B. Tetrahedron 1992, 33, 7049. (d) Hollingworth, G. J .; Perkins, G.;
Sweeney, J . B. J . Chem. Soc., Perkin Trans. 1 1996, 1913. (e) Maon,
R,; Richecoeur, A. M. E.; Sweeney, J . B. J . Org. Chem. 1999, 64, 328.
(12) (a) Mullholland, T. P. C.; Foster, R.; Haydock, J . Chem. Soc.,
Perkin Trans. 1 1972, 1225. (b) Greenhill, J . V.; Tomassini, T.
Tetrahedron Lett. 1974, 2683. (c) Schmidt, D. G.; Zimmer, H. Synth.
Commun. 1981, 11, 385.
(13) (a) Wang, X.-Z.; Deng, M.-Z. J . Chem. Soc., Perkin. Trans. 1
1996, 2663. (b) Zhou, S.-M.; Yan, Y.-L.; Deng, M.-Z. Synlett 1998, 198.
(c) Ma, H.-R.; Wang, X.-H.; Deng, M.-Z. Synth. Commun. 1999, 29,
2477.
(
f) Ma, S.-M.; Shi, Z.-J . J . Org. Chem. 1998, 63, 6387. (g) Boukouvalas,
J .; Lachance, N.; Ouellet, M.; Trudeau, M. Tetrahedron Lett. 1998, 39,
7
2
665. (h) Ma, S.-M.; Shi, Z.-J .; Yu, Z.-Q. Tetrahedron Lett. 1999, 40,
393.
(14) Yao, M.-L.; Deng, M.-Z. Synthesis accepted, 2000.
1
0.1021/jo000195t CCC: $19.00 © 2000 American Chemical Society
Published on Web 07/19/2000