LETTER
Bis(oxazolinyl)phenylrhodium(III) Aqua Complex
1885
(2) (a) Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans.
1976, 1020. (b) Reviews: Rietveld, M. H. P.; Grove, D. M.;
van Koten, G. New J. Chem. 1997, 21, 751. (c) Albrecht,
M.; van Koten, G. Angew. Chem. Int. Ed. 2001, 40, 3750.
(d) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103,
1759. (e) Singleton, J. T. Tetrahedron 2003, 59, 1837.
(3) (a) Motoyama, Y.; Makihara, N.; Mikami, Y.; Aoki, K.;
Nishiyama, H. Chem. Lett. 1997, 951. (b) Motoyama, Y.;
Narusawa, H.; Nishiyama, H. Chem. Commun. 1999, 131.
(c) Motoyama, Y.; Okano, M.; Narusawa, H.; Makihara, N.;
Aoki, K.; Nishiyama, H. Organometallics 2001, 20, 1580.
(d) Motoyama, Y.; Koga, Y.; Nishiyama, H. Tetrahedron
2001, 57, 853. (e) Motoyama, Y.; Shimozono, K.; Aoki, K.;
Nishiyama, H. Organometallics 2002, 21, 1684.
Et2O, and this solution was treated with a mixture of 1 N HCl
(5 mL) and solid KF (ca. 0.5 g) at r.t. for 30 min. The
resultant precipitate was filtered off, the filtrate was dried
over MgSO4 and concentrated under reduced pressure.
Purification by silica gel chromatography (hexane–Et2O =
3:1, then EtOAc as eluent for recovering i-Pr-1) gave
homoallylic alcohol, the enantioselectivity was determined
by chiral HPLC analysis. 5a: Daicel CHIRALCEL OD-H,
UV Detector 254 nm, hexane–i-PrOH = 20:1, flow rate 0.5
mL/min. tR = 13.1 min (S), 14.6 min (R); 5b: Daicel
CHIRALCEL OJ, UV Detector 254 nm, hexane–i-PrOH =
30:1, flow rate 0.5 mL/min. tR = 16.9 min (S), 19.1 min (R);
5c: Daicel CHIRALCEL OD-H, UV Detector 230 nm,
hexane–i-PrOH = 30:1, flow rate 0.5 mL/min. tR = 20.9 min
(R), 22.9 min (S); 5d: Daicel CHIRALCEL OD-H, UV
Detector 230 nm, hexane–i-PrOH = 40:1, flow rate 0.5 mL/
min. tR = 18.1 min (S), 19.1 min (R); 5e: Daicel
CHIRALCEL OD-H, UV Detector 254 nm, hexane–i-PrOH
= 20:1, flow rate 0.5 mL/min. tR = 13.5 min (S), 19.2 min (R);
5f: Daicel CHIRALCEL OD-H, UV Detector 254 nm,
hexane–i-PrOH = 20:1, flow rate 1.0 mL/min. tR = 10.9 min
(R), 20.8 min (S); 5g: The %ee was determined after
converting to the benzoate ester. Daicel CHIRALPAK AD,
UV Detector 254 nm, hexane–i-PrOH = 200:1, flow rate 0.5
mL/min. tR = 9.4 min (R), 11.2 min (S).
(f) Motoyama, Y.; Koga, Y.; Kobayashi, K.; Aoki, K.;
Nishiyama, H. Chem.–Eur. J. 2002, 8, 2968.
(g) Motoyama, Y.; Kawakami, H.; Shimozono, K.; Aoki, K.;
Nishiyama, H. Organometallics 2002, 21, 3408. (h) Also
see: Motoyama, Y.; Nishiyama, H. In Latest Frontiers of
Organic Synthesis; Kobayashi, Y., Ed.; Research Signpost:
India, 2002, 1.
(4) In the presence of MS 4 Å, this catalytic reaction was
slightly accelerated but the enantioselectivity was not
changed, see ref.3b
(5) For examples of chiral Lewis acid-catalyzed reactions in
water-containing solvents, see: (a) Diels–Alder reaction:
Mikami, K.; Kotera, O.; Motoyama, Y.; Sakaguchi, H.
Synlett 1995, 975. (b) Also see: Otto, S.; Engberts, J. B. F.
N. J. Am. Chem. Soc. 1999, 121, 6798. (c) Aldol reaction:
Kobayashi, S.; Nagayama, S.; Busujima, T. Tetrahedron
1999, 55, 8739. (d) Also see: Nagayama, S.; Kobayashi, S.
J. Am. Chem. Soc. 2000, 122, 11531. (e) Also see:
Kobayashi, S.; Hamada, T.; Nagayama, S.; Manabe, K. Org.
Lett. 2001, 3, 165. (f) Also see: Yamashita, Y.; Ishitani, H.;
Shimizu, H.; Kobayashi, S. J. Am. Chem. Soc. 2002, 124,
3292. (g) Allylation of aldehydes: Loh, T.-P.; Zhou, J.-R.
Tetrahedron Lett. 2000, 41, 5261. (h) Mannich-type
reaction: Kobayashi, S.; Hamada, T.; Manabe, K. J. Am.
Chem. Soc. 2002, 124, 5640. (i) Also see: Li, C.-J.; Chan,
T.-H. Organic Reactions in Aqueous Media; John Wiley &
Sons: New York, 1997. (j) Organic Synthesis in Water;
Grieco, P. A., Ed.; Blackie Academic and Professional:
London, 1998. (k) Kobayashi, S. In Lanthanides: Chemistry
and Use in Organic Synthesis; Kobayashi, S., Ed.; Springer:
Berlin, 1999, 63. (l) Kobayashi, S.; Manabe, K. Acc. Chem.
Res. 2002, 35, 209.
(6) General Procedure for the Catalytic Enantioselective
Addition of Methallyltributyltin 3 to Aldehydes
Catalyzed by i-Pr-1. To a suspension of MS 4A (125 mg)
in CH2Cl2 (1 mL) were added (i-Pr-Phebox)RhCl2(H2O)
complex i-Pr-1 (6.1 mg, 0.0125 mmol, 5 mol%), aldehyde
(0.25 mmol) and methallyltributyltin (0.375 mmol, 1.5
equiv) at 25 °C. After stirring the reaction mixture for 12 h
at that temperature, the reaction mixture was concentrated
under reduced pressure. The residue was dissolved 5 mL of
(7) 5a: [a]D23 –48.7 (c 0.63, Et2O); lit.8a [a]D20 –19.70° (c 9.90,
Et2O) for 40% ee (S); 5b: [a]D22 –44.5 (c 0.77, benzene);
lit.8b [a]D21 –40.4° (c 3.15, benzene) for 88% ee (S); 5c:
[a]D23 –67.9 (c 0.99, CHCl3); 5d: [a]D21 –49.2° (c 0.61,
CHCl3); 5e: [a]D22 +15.8° (c 0.85, CHCl3); lit.8b [a]D23 +16.6
(c 2.66, CHCl3) for 67% ee (R); 5f: [a]D22 –19.4 (c 0.26,
benzene); lit.8c [a]D +19.0 (c 1.44, benzene) for 84% ee (R);
5g: [a]D20 –3.30 (c 0.79, benzene); lit.8c [a]D +4.04 (c 1.93,
benzene) for 77% ee (R).
(8) (a) Hoffmann, R. W.; Herold, T. Chem. Ber. 1981, 114, 375.
(b) Minowa, N.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1987,
60, 3697. (c) Ishihara, K.; Mouri, M.; Gao, Q.; Maruyama,
T.; Furuta, K.; Yamamoto, H. J. Am. Chem. Soc. 1993, 115,
11490.
(9) Other examples of the recoverable chiral complexes are as
follows.: (a) Ru complex for the cyclopropanation:
Nishiyama, H.; Itoh, Y.; Matsumoto, H.; Park, S.-B.; Itoh, K.
J. Am. Chem. Soc. 1994, 116, 2223. (b) Ru complex for the
oxidation of sulfides: Schenk, W. A.; Dürr, M. Chem.–Eur.
J. 1997, 3, 713. (c) Ru complex for the Diels–Alder
reaction: Kündig, E. P.; Saudan, C. M.; Bernardinelli, G.
Angew. Chem. Int. Ed. 1999, 38, 1220. (d) Ni complex for
the 1,3-dipolar cycloaddition: Kanemasa, S.; Oderaotoshi,
Y.; Sakaguchi, S.; Yamamoto, H.; Tanaka, J.; Wada, E.;
Curran, D. P. J. Am. Chem. Soc. 1998, 120, 3074.
(10) Very recently, Portnoy reported the solid-supported Phebox-
Rh complexes and its application as heterogeneous catalysts
for the allylation of aldehydes, see: Weissberg, A.; Portnoy,
M. Chem. Commun. 2003, 1538.
Synlett 2003, No. 12, 1883–1885 © Thieme Stuttgart · New York