Radiolytic Oxidation of p-Cresol
J. Phys. Chem. A, Vol. 106, No. 50, 2002 12183
that indicate that the effects of the ring oxygen are to a large
extent localized in the region of the oxygen.
Bangalore, India. This is contribution NDRL4396 from the
Notre Dame Radiation Laboratory.
In Table 2S we particularly note that the 13C chemical shifts
of the ring carbons are, as for the dienone, somewhat higher
than those predicted by the DFT calculations. Clearly, the DFT
calculations, which are optimized for alkyl-like carbons, do not
produce reliable values for the ring carbons. As mentioned
above, similar discrepancies are noted for other aromatic
systems. We stress here that TMS is an inappropriate compu-
tational reference for the DFT calculations of the chemical shifts
of ring carbons in aromatic like systems. Apparently, at the level
used, these calculations do not adequately take into account the
π electrons.
Supporting Information Available: NMR properties of 4H-
pyran-4-one as a model for the dienone system are described
in the Supporting Information. Included are Tables S1, listing
the proton chemical shifts and coupling constants, and Table
S2, the 13C chemical shifts and 13C-1H coupling constants. This
material is available free of charge via the Internet at http://
pubs.acs.org.
References and Notes
(1) Albarran, G.; Schuler, R. H. To be submitted for publication.
(2) Piatini, U.; Soerenson, O. W.; Ernst, R. R. J. Am. Chem. Soc. 1982,
104, 6800-6801.
(3) Bax, A.; Morris, G. A. J. Magn. Reson. 1981, 42, 501-905.
(4) Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093-
2094.
(5) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
(6) Hariharan, P. C.; Pople, J. A. Chem. Phys. Lett. 1972, 16, 217-
219.
(7) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J.
Chem. Phys. 1996, 104, 5497-5509.
(8) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112,
8251-8260.
(9) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. A.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Baboul, A. G.; Stefanov; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill,
P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-
Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian98, revision A.7 ed.;
Gaussian, Inc: Pittsburgh, PA, 1998.
Summary
The present example represents a special case in that addition
•
of OH radical at the methyl position of the cresol results in a
•
readily observable product. Addition of OH radicals at ipso
positions of most other alkyl-substituted aromatics produces
intermediates that are not readily converted to products that
retain information pertaining to the site of addition. For example,
no product other than the expected cresols was found in a
detailed study of the radiolytic oxidation of toluene.17 There
currently is no quantitative information on the importance of
addition of •OH to alkyl-substituted positions of aromatics from
either time-resolved or product analysis studies. Attack of •OH
at positions of aromatics substituted with groups other than
alkyls clearly must also be of some importance, but such
processes are frequently masked by complicating secondary
reactions. For example, in the case of phenol the intermediate
•
radical produced by OH addition at the hydroxyl position
rapidly loses H2O to produce a phenoxyl radical. The observa-
tion that reaction I occurs to a significant extent is of particular
importance in radiolytic studies of aqueous solutions because
•OH radicals frequently dominate the oxidation processes. In a
more general sense similar processes must also be considered
in chemical studies where oxidation occurs via the reactions of
hydroxyl radicals.
(10) Kowalewski, J.; Laaksonen, A.; Roos, B.; Siegbahn, P. J. Chem.
Phys. 1979, 71, 2896-2902.
(11) Cloran, F.; Zhu, Y.; Osborn, J.; Carmichael, I.; Serianni, A. S. J.
Am. Chem. Soc. 2000, 122, 6435-6448.
(12) Carmichael, I. J. Phys. Chem. 1993, 97, 1789-1792.
(13) McConnell, H. M.; McLean, A. D.; Reilly, C. A. J. Chem. Phys.
1955, 23, 1152-1159.
(14) PERCH (v 1/2000), University of Kuopio, Finland.
(15) Wipf, P.; Kim, Y. J. Am. Chem. Soc. 1994, 116, 11678-11688.
(16) Previous reports indicate doublets-of-doublets in these regions;
cf.: Loots, M. J.; Weingarten, L. R.; Levin, R. H. J. Am. Chem. Soc. 1976,
98, 4571-4577.
Acknowledgment. Research described herein was supported
by the Office of Basic Energy Sciences of the U.S. Department
of Energy, by CONACyT-Mexico, grant No. 33752-E, and by
the Jawaharlal Nehru Centre for Advanced Scientific Research,
(17) Albarran, G.; Schuler, R. H. Radiat. Phys. Chem. 2002, 63, 661-
663.